
CONCEPTUAL
e o e e a
t r r s n
w r f t g

The o e and o i u
r c r n a
k t m g g

n a e
e n
s c
s e

Scott Pakin, pakin@lanl.gov

mailto:pakin@lanl.gov

Copyright c© 2004, The Regents of the University of California

This document describes coNCePTuaL version 0.5.3.

i

Table of Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Typesetting conventions . 2

2 Installation . 3
2.1 configure . 4
2.2 make . 5
2.3 make install . 8

3 Usage . 11
3.1 Compiling coNCePTuaL programs . 11
3.2 Supplied backends . 13

3.2.1 The c seq backend . 13
3.2.2 The c mpi backend . 13
3.2.3 The c udgram backend . 14
3.2.4 The c trace backend . 14
3.2.5 The interpret backend. 17
3.2.6 The dot backend. 19

3.3 Running coNCePTuaL programs . 21
3.4 Interpreting coNCePTuaL log files . 23

3.4.1 Log-file format . 23
3.4.2 ‘logextract’ . 28

4 Grammar . 46
4.1 Primitives . 46
4.2 Expressions . 47

4.2.1 Arithmetic expressions . 48
4.2.2 Built-in functions . 49
4.2.3 Aggregate expressions . 59
4.2.4 Aggregate functions . 60
4.2.5 Relational expressions . 60

4.3 Task descriptions . 61
4.3.1 Restricted identifiers . 61
4.3.2 Source tasks . 62
4.3.3 Target tasks . 62

4.4 Communication statements . 63
4.4.1 Message specifications . 63
4.4.2 Sending . 67
4.4.3 Receiving . 68
4.4.4 Awaiting completion . 69
4.4.5 Multicasting . 70
4.4.6 Synchronizing . 70

ii

4.5 I/O statements . 70
4.5.1 Utilizing log-file comments . 71
4.5.2 Writing to standard output . 71
4.5.3 Writing to a log file . 71

4.6 Other statements . 73
4.6.1 Resetting counters . 74
4.6.2 Asserting conditions . 74
4.6.3 Delaying execution. 74
4.6.4 Touching memory . 75
4.6.5 Reordering task IDs . 76
4.6.6 Injecting arbitrary code . 77

4.7 Complex statements . 78
4.7.1 Combining statements . 78
4.7.2 Iterating . 79
4.7.3 Binding variables . 83
4.7.4 Conditional execution . 84
4.7.5 Grouping . 85

4.8 Header declarations . 85
4.8.1 Language versioning . 86
4.8.2 Command-line arguments . 86

4.9 Complete programs . 87

5 Examples . 89
5.1 Latency . 89
5.2 Hot potato . 89
5.3 Hot spot. 90
5.4 Multicast trees . 91

6 Implementation. 93
6.1 Overview . 93
6.2 Backend creation . 94

6.2.1 Hook methods . 95
6.2.2 A minimal C-based backend . 97
6.2.3 Generated code . 98
6.2.4 Internals . 100

6.3 Run-time library functions . 102
6.3.1 Variables and data types . 102
6.3.2 Miscellaneous functions . 103
6.3.3 Initialization functions . 104
6.3.4 Memory-allocation functions 105
6.3.5 Message-buffer manipulation functions 106
6.3.6 Time-related functions . 107
6.3.7 Log-file functions . 107
6.3.8 Random-task functions . 109
6.3.9 Queue functions . 110
6.3.10 Language-visible functions 111
6.3.11 Finalization functions . 114

iii

7 Tips and Tricks . 115
7.1 Using out-of-bound task IDs to simplify code 115
7.2 Proper use of conditionals . 116
7.3 Memory efficiency . 117

8 Troubleshooting . 119
8.1 Interpreting configure warnings . 119
8.2 Compaq compilers on Alpha CPUs . 120
8.3 “Cannot open shared object file” errors 121
8.4 Inhibiting the use of child processes . 121
8.5 Keeping programs from dying on a signal 122
8.6 “Unaligned access” warnings . 122

Appendix A Reserved Words. 123
A.1 Keywords . 123
A.2 Predeclared variables . 127

Appendix B Backend Reference 129
B.1 Method calls . 129
B.2 C hooks . 131
B.3 Representing aggregate functions . 133

License . 135

Index . 136

Chapter 1: Introduction 1

1 Introduction

This document presents a simple, special-purpose language called coNCePTuaL. coN-
CePTuaL is intended for rapidly generating programs that measure the performance
and/or test the correctness of networks and network protocol layers. A few lines of coN-
CePTuaL code can produce programs that would take significantly more effort to write in
a conventional programming language.

coNCePTuaL is not merely a language specification. The coNCePTuaL toolset
includes a compiler, run-time library, and associated utility programs that enable users to
analyze network behavior quickly, conveniently, and accurately.

1.1 Motivation

A frequently reinvented wheel among network researchers is a suite of programs that
test a network’s performance. A problem with having umpteen versions of performance
tests is that it leads to a variety in the way results are reported; colloquially, apples are
often compared to oranges. Consider a bandwidth test. Does a bandwidth test run for
a fixed number of iterations or a fixed length of time? Is bandwidth measured as ping-
pong bandwidth (i.e., 2 × message length ÷ round-trip time) or unidirectional throughput
(N messages in one direction followed by a single acknowledgement message)? Is the ac-
knowledgement message of minimal length or as long as the entire message? Does its length
contribute to the total bandwidth? Is data sent unidirectionally or in both directions at
once? How many warmup messages (if any) are sent before the timing loop? Is there a delay
after the warmup messages (to give the network a chance to reclaim any scarce resources)?
Are receives nonblocking (possibly allowing overlap in the NIC) or blocking?

The motivation behind creating coNCePTuaL, a simple specification language de-
signed for describing network benchmarks, is that it enables a benchmark to be described
sufficiently tersely as to fit easily in a report or research paper, facilitating peer review of
the experimental setup and timing measurements. Because coNCePTuaL code is simple
to write, network tests can be developed and deployed with low turnaround times—useful
when the results of one test suggest a following test that should be written. Because coN-
CePTuaL is special-purpose its run-time system can perform the following functions, which
benchmark writers often neglect to implement:
• logging information about the environment under which the benchmark ran: operating

system, CPU architecture and clock speed, timer type and resolution, etc.
• aborting a program if it takes longer than a predetermined length of time to complete
• writing measurement data and descriptive statistics to a variety of output formats,

including the input formats of various graph-plotting programs

coNCePTuaL is not limited to network peformance tests, however. It can also be used for
network verification. That is, coNCePTuaL programs can be used to locate failed links
or to determine the frequency of bit errors—even those that may sneak past the network’s
CRC hardware.

In addition, because coNCePTuaL is a very high-level language, the coNCePTuaL
compiler’s backend has a great deal of potential. It would be possible for the backend to
produce a variety of target formats such as Fortran + MPI, Perl + sockets, C + a network

Chapter 1: Introduction 2

vendor’s low-level messaging layer, and so forth. It could directly manipulate a network
simulator. It could feed into a graphics program to produce a space-time diagram of a
coNCePTuaL program. The possibilities are endless.

1.2 Typesetting conventions

The following table showcases the typesetting conventions used in this manual to at-
tribute various meanings to text. Note that not all of the conventions are typographically
distinct.� �
-a

--abcdef command-line options (e.g., -C or --help)

ABCDEF environment variables (e.g., PATH)

〈abcdef 〉 nonterminals in the coNCePTuaL grammar (e.g., 〈ident〉)

abcdef commands to enter on the keyboard (e.g., make install)

‘abcdef’ file and directory names (e.g., ‘conceptual.pdf’)

ABCDEF coNCePTuaL keywords (e.g., RECEIVE)

abcdef variables, constants, functions, and types in any language (e.g., bit_errors or
gettimeofday())

abcdef metasyntactic variables and formal function parameters (e.g., fan-out)

‘abcdef’ snippets of code, command lines, files, etc. (e.g., ‘10 MOD 3’)
 	

Chapter 2: Installation 3

2 Installation

coNCePTuaL uses the GNU Autotools (Autoconf, Automake, and Libtool) to increase
portability, to automate compilation, and to facilitate installation. As of this writing,
coNCePTuaL has passed make check (see Section 2.2 [make], page 5) on the following
platforms:
Architecture OS Compiler
IA-32 Linux ‘gcc’ (GNU)

‘icc’ (Intel)
‘pgcc’ (PGI)

FreeBSD ‘gcc’ (GNU)
OpenBSD ‘gcc’ (GNU)
Windows
(via Cygwin)

‘gcc’ (GNU)

IA-64 Linux ‘gcc’ (GNU)
‘ecc’ (Intel)

PowerPC Linux ‘gcc’ (GNU)
‘xlc’ (IBM)

MacOS X ‘gcc’ (GNU)
BLRTS ‘xlc’ (IBM)

Cray X1 UNICOS/mp ‘cc’ (Cray)

UltraSPARC Solaris ‘gcc’ (GNU)
‘cc’ (Sun)

MIPS IRIX ‘gcc’ (GNU)
‘cc’ (MIPSpro)

Alpha Linux ‘gcc’ (GNU)
‘ccc’ (HP)

Tru64 ‘gcc’ (GNU)
‘cc’ (HP)

In its simplest form, coNCePTuaL installation works by executing the following com-
mands at the operating-system prompt:� �
./configure
make
make install
 	
(‘configure’ is normally run as ./configure to force it to run from the current directory
on the assumption that ‘.’ is not in the executable search path.) We now describe those
three installation steps in detail, listing a variety of customization options for each step.

Chapter 2: Installation 4

2.1 configure

‘configure’ is a Bourne-shell script that analyzes your system’s capabilities (compiler
features, library and header-file availability, function and datatype availability, linker flags
for various options, etc.) and custom-generates a ‘Makefile’ and miscellaneous other files.
‘configure’ accepts a variety of command-line options. ./configure --help lists all of
the options. The following are some of the more useful ones:

--disable-shared

coNCePTuaL normally installs both static and dynamic libraries. While
dynamic libraries have a number of advantages they do need to be installed
on all nodes that run the compiled coNCePTuaL programs. If global in-
stallation is not convenient/feasible, --disable-shared can be used to force
static linking of executables. Note, however, that ‘libncptlmodule.so’, the
Python interface to the coNCePTuaL run-time library, needs to be built as
a shared object so that it can be loaded dynamically into a running Python
interpreter. --disable-shared inhibits the compilation and installation of
‘libncptlmodule.so’.

--prefix=directory
make install normally installs coNCePTuaL into the ‘/usr/local’
directory. The --prefix option instructs ‘configure’ to write a
‘Makefile’ with a different installation directory. For example,
--prefix=/local/encap/conceptual-0.5.3 will cause coNCeP-
TuaL’s files to be installed in ‘/local/encap/conceptual-0.5.3/bin’,
‘/local/encap/conceptual-0.5.3/include’, etc.

--disable-papi

coNCePTuaL normally uses the Performance API (PAPI)—if available—to
help acquire system information. However, if PAPI cannot be installed on all
of the nodes that will be running compiled coNCePTuaL programs then it
may be worth instructing coNCePTuaL not to use PAPI, even if available.

--with-gettimeofday

The coNCePTuaL run-time library is able to use any of a variety of
platform-specific microsecond timers to take to timing measurements. The
--with-gettimeofday option forces the run-time library to utilize instead
the generic C gettimeofday() function. This can be useful in the rare,
but not impossible, case that a quirk in some particular platform misleads
one of coNCePTuaL’s other timers. The ‘validatetimer’ utility (see
Section 2.2 [make], page 5) can help determine whether --with-gettimeofday
is necessary.

CC=C compiler
‘configure’ automatically searches for a C compiler to use. To override its
selection, assign a value to CC on the command line. For example, ./configure
CC=ecc will cause coNCePTuaL to be built with ‘ecc’.

Chapter 2: Installation 5

CFLAGS=C compiler flags
LDFLAGS=linker flags
CPPFLAGS=C preprocessor flags
LIBS=extra libraries

Like CC, these variables override the values determined automatically by
‘configure’. As an illustration, ./configure CPPFLAGS="-DSPECIAL
-I/home/pakin/include/special -I." CFLAGS="-O3 -g -Wall -W"
LDFLAGS=--static LIBS="-lz /usr/lib/libstuff.a" assigns values to all
four variables.

MPICC=C compiler
MPICPPFLAGS=C preprocessor flags
MPILDFLAGS=extra linker flags
MPILIBS=extra libraries

These variables are analagous to CC, CPPFLAGS, LDFLAGS, and LIBS, respectively.
The difference is that they are not used to build the coNCePTuaL run-time
library but rather to build user programs targeted to the C+MPI compiler
backend. For example, if your MPI installation lacks an ‘mpicc’ script, you
may need to specify extra header files and libraries explicitly: ./configure

MPICPPFLAGS="-I/usr/lib/mpi/include" MPILIBS="-lmpich".

As a rather complex illustration of how some of the preceding options (as well as a
few mentioned by ./configure --help) might be combined, the following is how coN-
CePTuaL was once configured to cross-compile from a Linux/PowerPC build machine
to a prototype of the BlueGene/L supercomputer (containing, at the time, 2048 embed-
ded PowerPC processors, each executing a minimal run-time system, BLRTS). IBM’s ‘xlc’
compiler was accessed via a wrapper script called ‘mpcc’.

./configure CFLAGS="-g -O -qmaxmem=64000" CC=/bgl/local/bin/mpcc
CPP="gcc -E" --host=powerpc-ibm-linux-gnu --build=powerpc-unknown-linux-gnu
--with-alignment=8 --with-gettimeofday --prefix=/bgl/bgguest/LANL/ncptl
MPICC=/bgl/local/bin/mpcc CPPFLAGS=-I/BlueLight/floor/bglsys/include

It’s always best to specify environment variables as arguments to ./configure because
the ‘configure’ script writes its entire command line as a comment to ‘config.log’ and
as a shell command to ‘config.status’ to enable re-running ./configure with exactly
the same parameters.

When ./configure finishes running it outputs a list of the warning messages that
were issued during the run. If no warnings were issued, ./configure will output
‘Configuration completed without any errors or warnings.’.

2.2 make

Running make by itself will compile the coNCePTuaL run-time library. However, the
‘Makefile’ generated by ‘configure’ can perform a variety of other actions, as well:

make check

Perform a series of regression tests on the coNCePTuaL run-time library.
This is a good thing to do after a make to ensure that the run-time library

Chapter 2: Installation 6

built properly on your system. If any tests fail, it may be possible to gain more
information about the source of the problem by compiling the test suite with
the DEBUG symbol defined in the C preprocessor and re-running it:

cd tests
make clean
make CPPFLAGS="-DDEBUG" check

make clean

make distclean

make maintainer-clean

make clean deletes all files generated by a preceding make command.
make distclean deletes all files generated by a preceding ./configure

command. make maintainer-clean delete all generated files. Run
make maintainer-clean only if you have fairly recent versions of the GNU
Autotools (Autoconf 2.53, Automake 1.6, and Libtool 1.4) because those are
needed to regenerate some of the generated files. The sequence of operations
to regenerate all of the configuration files needed by coNCePTuaL is shown
below.� �
libtoolize --force --copy
aclocal
autoheader
automake --add-missing --copy
autoconf
 	

make install

Install coNCePTuaL, including the compiler, run-time library, header files,
and tools. make install is described in detail later in this section.

make uninstall

Remove all of the files that make install installed. Most of the top-level di-
rectories are retained, however, as ‘make’ cannot guarantee that these are not
needed by other applications.

make info

make pdf

make docbook

Produce the coNCePTuaL user’s manual (this document) in, respectively,
Emacs info format, PDF format, or DocBook format. The resulting docu-
mentation (‘conceptual.info*’, ‘conceptual.pdf’, or ‘conceptual.xml’) is
created in the ‘doc’ subdirectory.

make logextract.html

coNCePTuaL comes with a postprocessor called ‘logextract’ which
facilitates extracting information from coNCePTuaL-produced log files. The
complete ‘logextract’ documentation is presented in Section 3.4.2 [logextract],
page 28. As is readily apparent from that documentation, ‘logextract’
supports an overwhelming number of command-line options. To make the
‘logextract’ documentation more approachable, the make logextract.html

command creates a dynamic HTML version of it (and stores in the ‘doc’

Chapter 2: Installation 7

subdirectory). The result, ‘logextract.html’, initially presents only the top
level of the ‘logextract’ option hierarchy. Users can then click on the name
of a command-line option to expand or contract the list of subobtions. This
interactive behavior makes it easy for a user to get more information on some
options without being distracted by the documentation for the others.

make empty.log

Create an empty log file called ‘empty.log’ which contains a complete header
and trailer but no data. This is convenient for validating that the coNCeP-
TuaL run-time library was built using your preferred build options.

make stylesheets

coNCePTuaL can automatically produce stylesheets for a variety of pro-
grams. These stylesheets make keywords, comments, strings, and other terms
in the language visually distinct from each other for a more aesthetically ap-
pealing appearance. Currently, make stylesheets produces a LATEX2ε pack-
age (‘ncptl.sty’), an ‘a2ps’ style sheet (‘ncptl.ssh’), an Emacs major mode
(‘ncptl-mode.el’/‘ncptl-mode.elc’), and a Vim syntax file (‘ncptl.vim’).
Note that the ‘Makefile’ currently lacks provisions for installing these files so
whichever stylesheets are desired will need to be installed manually. Stylesheet
installation is detailed at the end of this section.

make modulefile

The Modules package (http://modules.sourceforge.net/) facilitates config-
uring the operating-system shell for a given application. The make modulefile

command creates a ‘conceptual_0.5.3’ modulefile that checks for conflicts
with previously loaded coNCePTuaL modulefiles then sets the PATH, MANPATH,
and LD_LIBRARY_PATH environment variables to values appropriate values as
determined by ‘configure’ (see Section 2.1 [configure], page 4).

Normally, ‘conceptual_0.5.3’ should be installed in the system’s module path
(as described by the MODULEPATH environment variable). However, users with-
out administrator access can still use the coNCePTuaL modulefile as a con-
venient mechanism for properly setting all of the environment variables needed
by coNCePTuaL:� �
make modulefile
module load ./conceptual_0.5.3
 	
See the ‘module’ man page for more information about modules.

make dist

Package together all of the files needed to rebuild coNCePTuaL. The resulting
file is called ‘conceptual-0.5.3.tar.gz’ (for this version of coNCePTuaL).

make all

Although all is the default target it can also be specified explicitly. Doing so
is convenient when performing multiple actions at once, e.g., make clean all.

make tags

Chapter 2: Installation 8

Produce/update a ‘TAGS’ file that the Emacs text editor can use to find func-
tion declarations, macro definitions, variable definitions, typedefs, etc. in the
coNCePTuaL run-time library source code. This is useful primarily for de-
velopers wishing to interface with the coNCePTuaL run-time library. Read
the Emacs documentation for M-x find-tag for more information.

Validating the coNCePTuaL timer

make automatically builds a program called ‘validatetimer’. ‘validatetimer’ helps
validate that the real-time clock used by the coNCePTuaL run-time library accurately
measures wall-clock time. The idea is to compare coNCePTuaL’s timer to an external
clock (i.e., one not associated with the computer). Simply follow the program’s prompts:� �
% validatetimer
Press <Enter> to start the clock ...
Press <Enter> again in exactly 60 seconds ...

coNCePTuaL measured 60.005103 seconds.
coNCePTuaL timer error = 0.008505%
 	

If the difference between coNCePTuaL’s timer and an external clock is significant, then
performance results from coNCePTuaL—and possibly from other programs, as well—
should not be trusted. Note that only extreme differences in timings are significant; there
will always be some error caused by human response time and by system I/O speed. In the
case that there is an extreme performance difference,1 the --with-gettimeofday option to
‘configure’ (see Section 2.1 [configure], page 4) may be a viable workaround.

‘validatetimer’ takes an optional command-line argument, which is the number of
seconds of wall-clock time to expect. The default is ‘60’. Larger numbers help amortize
error; smaller numbers enable the program to finish sooner.

2.3 make install

The coNCePTuaL compiler and run-time library are installed with make install.
Although ‘configure’ can specify the default installation directory this can be overridden
at make install time in one of two ways. make DESTDIR=prefix install prepends prefix
to every directory when installing. However, the files are installed believing that DESTDIR

was not specified. For example, make DESTDIR=/mnt install would cause executables to
be installed into ‘/mnt/usr/local/bin’, but if any of these are symbolic links, the link will
omit the ‘/mnt’ prefix.

The second technique for overriding installation directories is to specify a new value
for ‘prefix’ on the command line. That is, make prefix=/opt/ncptl install will install

1 To date, extreme performance differences have been observed primarily on PowerPC-based systems.
The PowerPC cycle counter is clocked at a different rate from the CPU speed, which may confuse coN-
CePTuaL. The run-time library compensates for this behavior on all tested platforms (see Chapter 2
[Installation], page 3), but the user should nevertheless make sure to run ‘validatetimer’ to verify that
coNCePTuaL’s timer is sufficiently accurate.

Chapter 2: Installation 9

into ‘/opt/ncptl/bin’, ‘/opt/ncptl/include’, ‘/opt/ncptl/man’, etc., regardless of the
--prefix value given to ‘configure’. coNCePTuaL’s ‘Makefile’ provides even finer-
grained control than that. Instead of—or in addition to—specifying a prefix option on
the command line, individual installation directories can be named explicitly. These in-
clude bindir, datadir, libdir, includedir, infodir, mandir, pkgdatadir, pythondir,
and many others. Scrutinize the ‘Makefile’ to find a particular directory that should be
overridden.

The remainder of this section presents a number of optional installation steps that add
coNCePTuaL support to a variety of third-party software packages.

Installing stylesheets

The make stylesheets command produces a variety of stylesheets for presenting coN-
CePTuaL code in a more pleasant format than ordinary, monochromatic text. Stylesheets
must currently be installed manually as per the following instructions:

‘ncptl.sty’
‘ncptl.sty’ is typically installed in ‘texmf /tex/latex/misc’, where texmf
is likely to be ‘/usr/local/share/texmf’. On a Web2c version of TEX the
command kpsewhich -expand-var=’$TEXMFLOCAL’ should output the correct
value of texmf. In most TEX distributions the filename database needs to be
refreshed after a new package is installed. See http://www.tex.ac.uk/cgi-
bin/texfaq2html?label=instpackages for more information. ‘ncptl.sty’ is
merely a customization of the ‘listings’ package that defines a new language
called ‘ncptl’. See the ‘listings’ documentation for instructions on typeset-
ting source code.

‘ncptl.ssh’
Running a2ps --list=defaults outputs (among other things) the ‘a2ps’ li-
brary path. ‘ncptl.ssh’ should be installed in one of the ‘sheets’ directories
listed there, typically ‘/usr/share/a2ps/sheets’.

‘ncptl-mode.el’
‘ncptl-mode.elc’

‘ncptl-mode.el’ and ‘ncptl-mode.elc’ belong in a local Elisp directory
that is part of the Emacs load-path, e.g., ‘/usr/share/emacs/site-lisp’.
The following Elisp code, which belongs in ‘~/.emacs’ for GNU Emacs or
‘~/.xemacs/init.el’ for XEmacs, makes Emacs set ncptl-mode whenever
opening a file with extension ‘.ncptl’:� �
(autoload ’ncptl-mode "ncptl-mode"

"Major mode for editing coNCePTuaL programs." t)
(add-to-list ’auto-mode-alist ’("\\.ncptl$" . ncptl-mode))
 	
Syntax highlighting should be enabled by default. If it isn’t, the Emacs com-
mand M-x font-lock-mode should enable it for the current buffer.

Chapter 2: Installation 10

‘ncptl.vim’
Vim’s syntax-file directory may be named after the Vim version, e.g.,
‘/usr/share/vim/vim61/syntax’ for Vim 6.1. Put ‘ncptl.vim’ there. To
associate ‘.ncptl’ files with coNCePTuaL code, the following lines need
to be added to Vim’s ‘filetype.vim’ file somewhere between the ‘augroup
filetypedetect’ line and the ‘augroup END’ line:� �
" coNCePTuaL
au BufNewFile,BufRead *.ncptl setf ncptl
 	

SLOCCount

SLOCCount (http://www.dwheeler.com/sloccount/) is a utility that counts the num-
ber of lines of code in a file, excluding blank lines and comments. SLOCCount supports a
variety of programming languages and it is straightforward to get it to support coNCeP-
TuaL, as well. The procedure follows the “Adding support for new languages” section of
the SLOCCount manual:
1. Create an ‘ncptl_count’ script with the following contents:� �

#! /bin/sh

generic_count "#" $@
 	
2. Mark the script executable and install it somewhere in your executable search path.
3. Edit SLOCCount’s ‘break_filelist’ Perl script to include the following association

in the %file_extensions hash:� �
"ncptl" => "ncptl", # coNCePTuaL
 	

pkg-config

The ‘pkg-config’ utility helps ensure that programs are given appropriate compiler
and linker flags to use a particular package’s C header files and libraries. coNCeP-
TuaL’s ‘configure’ script (see Section 2.1 [configure], page 4) automatically produces
a ‘pkg-config’ configuration file for the coNCePTuaL header file (‘ncptl.h’) and run-
time library (‘libncptl’). This configuration file, ‘ncptl.pc’, should be installed in one of
the directories searched by ‘pkg-config’ (‘/usr/lib/pkgconfig’ on some systems). Once
‘ncptl.pc’ is installed, ‘pkg-config’ can be used to compile C programs that require the
coNCePTuaL header file and link programs that require the coNCePTuaL run-time
library, as is shown in the following example:� �
cc ‘pkg-config --cflags ncptl‘ -c myprog.c
cc -o myprog myprog.o ‘pkg-config --libs ncptl‘
 	

Chapter 3: Usage 11

3 Usage

coNCePTuaL is more than just a language; it is a complete toolset which consists of
the following components:
• the coNCePTuaL language (see Chapter 4 [Grammar], page 46)
• a compiler and run-time library for coNCePTuaL programs (see Section 3.1 [Com-

piling coNCePTuaL programs], page 11)
• a set of compiler backends that can generate code for a variety of languages and com-

munication layers (see Section 3.2 [Supplied backends], page 13)
• utilities to help analyze the results (see Section 3.4.2 [logextract], page 28)

This chapter explains how to compile and run coNCePTuaL programs and how to
interpret the log files they output.

3.1 Compiling coNCePTuaL programs

The coNCePTuaL compiler is called ‘ncptl’ and is, by default, installed into
‘/usr/local/bin’. Executing ncptl --help produces a brief usage string:� �
Usage: ncptl [--backend=<string>] [--quiet] [--no-link | --no-compile]

[--keep-ints] [--lenient] [--output=<file>]
<file.ncptl> | --program=<program>
[<backend-specific options>]
 	

The usage string is followed by a list of installed backends.
The following list describes each compiler option in turn:

--backend (abbreviation: -b)
Specify the module that coNCePTuaL should use as the compiler backend.
‘ncptl’ must be told which backend to use with either --backend=backend or
by setting the environment variable NCPTL_BACKEND to the desired backend.
Running ncptl with no arguments (and without NCPTL_BACKEND set) will list
the available backends. Most coNCePTuaL backends are code generators.
For example, c_mpi causes ‘ncptl’ to compile coNCePTuaL programs into C
using MPI as the communication library. However, a backend need not generate
code directly—or at all. The c_trace backend (see Section 3.2.4 [The c trace
backend], page 14), for instance, supplements the code generated by another
backend by adding tracing output to it.
‘ncptl’ searches for backends first using NCPTL_PATH, an environment variable
containing a colon-separated list of directories (default: empty); then, in the
directory in which coNCePTuaL installed all of its Python files; and finally,
in the default Python search path. Non-directories (e.g., the ‘.zip’ archives
used in newer versions of Python) are not searched.

--quiet (abbreviation: -q)
The --quiet option tells ‘ncptl’ and the chosen backend to output minimal
status information.

Chapter 3: Usage 12

--no-link (abbreviation: -c)
By default, ‘ncptl’ instructs the backend to compile and link the user’s coN-
CePTuaL program into an executable file. --no-link tells the backend to
skip the linking step and produce only an object file.

--no-compile (abbreviation: -E)
By default, ‘ncptl’ instructs the backend to compile and link the user’s coN-
CePTuaL program into an executable file. --no-compile tells the backend to
skip both the compilation and the linking step and to produce only a source
file in the target language.

--keep-ints (abbreviation: -K)
coNCePTuaL backends normally delete any files created as part of the com-
piling or linking process. --keep-ints tells ‘ncptl’ and the chosen backend to
preserve their intermediate files.

--lenient (abbreviation: -L)
The --lenient option tells the compiler to permit certain constructs
that would otherwise result in a compilation error. First, using the same
command-line option (either the long or short variant) for two different
variables normally generates an ‘Option opt is multiply defined’ error.
(See Section 4.8.2 [Command-line arguments], page 86, for a description of
how to declare command-line options in coNCePTuaL.) --lenient tells the
coNCePTuaL compiler to automatically rename duplicate options to avoid
conflicts. Only the option strings can be renamed; the programmer must
still ensure that the option variables are unique. Second, using a variable
without declaring it normally produces an error message at compile time.
Passing --lenient to ‘ncptl’ tells the compiler to automatically generate
a command-line option for each missing variable. This is convenient when
entering brief programs on the command line with --program (described
below) as it can save a significant amount of typing.

--output (abbreviation: -o)
‘ncptl’ normally writes its output to a file with the same base name as the
input file (or ‘a.out’ if the program was specified on the command line using
--program). --output lets the user specify a file to which to write the generated
code.

--program (abbreviation: -p)
Because coNCePTuaL programs can be quite short --program enables a pro-
gram to be specified in its entirety on the command line. The alternative to
using --program is to specify the name of a file containing a coNCePTuaL
program. By convention, coNCePTuaL programs have a ‘.ncptl’ file exten-
sion.

The following—to be entered without line breaks—is a sample command line:

ncptl --backend=c_mpi --output=sample.c --program=’Task 0 sends a 0
byte message to task 1 then task 1 sends a 0 byte message to task 0
then task 0 logs elapsed_usecs/2 as "Startup latency (usecs)".’

Chapter 3: Usage 13

‘ncptl’ stops processing the command line at the first unrecognized option it encoun-
ters. That option and all subsequent options—including those which ‘ncptl’ would other-
wise process—are passed to the backend without interpretation by ‘ncptl’. Furthermore,
the -- (i.e., empty) option tells ‘ncptl’ explicitly to stop processing the command line at
that point. For example, in the command ncptl --lenient myprogram.ncptl -- --help,
‘ncptl’ will process the --lenient option but will pass --help to the backend even though
‘ncptl’ has its own --help option.

3.2 Supplied backends

The coNCePTuaL 0.5.3 distribution includes the following compiler backends:

c_seq Generate ANSI C code with no communication support.

c_mpi Generate ANSI C code with calls to the MPI library for communication.

c_udgram Generate ANSI C code that communicates using Unix-domain (i.e., local to a
single machine) datagram sockets.

c_trace Instrument a C-based backend either to include a call to fprintf() before
every program event or to utilize the ‘curses’ library to display graphically the
execution of a selected task.

interpret
Interpret a coNCePTuaL program, simulating any number of processors and
checking for common problems such as deadlocks and mismatched sends and
receives.

dot Output a program’s parse tree in the Graphviz DOT format.

Each of these is described in turn in the following sections.

3.2.1 The c seq backend

The c_seq backend is intended primarily to provide backend developers with a minimal
C-based backend that can be used as a starting point for creating new backends. See
Section 6.2 [Backend creation], page 94, explains how to write backends.

3.2.2 The c mpi backend

The c_mpi backend is coNCePTuaL’s workhorse. It generates parallel programs writ-
ten in ANSI C that communicate using the industry-standard MPI messaging library.

By default, c_mpi produces an executable program that can be run with ‘mpirun’, ‘prun’,
‘pdsh’, or whatever other job-launching program is normally used to run MPI programs.
When ‘ncptl’ is run with the --no-link option, c_mpi produces an object file that needs
to be linked with the appropriate MPI library. When ‘ncptl’ is run with the --no-compile
option, c_mpi outputs ANSI C code that must be both compiled and linked.

c_mpi honors the following environment variables when compiling and linking C+MPI
programs: MPICC, MPICPPFLAGS, MPILDFLAGS, MPILIBS. If any of these variables is not
found in the environment, c_mpi will use the value specified/discovered at configuration

Chapter 3: Usage 14

time (see Section 2.1 [configure], page 4). MPICC defaults to the value of CC; the remaining
variables are appended respectively to CPPFLAGS, LDFLAGS, and LIBS.

In the generated code, MPI_Isend() and MPI_Irecv() are used for asynchronous com-
munication and MPI_Send() and MPI_Recv() are normally used for synchronous commu-
nication. However, the c_mpi-specific compiler option --ssend instructs c_mpi to replace
all calls to MPI_Send() in the generated code with calls to MPI_Ssend(), MPI’s synchro-
nizing send function. A program’s log files indicate whether the program was built to use
MPI_Send() or MPI_Ssend().

The following is a complete list of MPI functions employed by the c_mpi backend:
MPI_Allreduce(), MPI_Barrier(), MPI_Bcast(), MPI_Comm_rank(), MPI_Comm_
size(), MPI_Comm_split(), MPI_Errhandler_set(), MPI_Finalize(), MPI_Init(),
MPI_Irecv(), MPI_Isend(), MPI_Recv(), MPI_Send()/MPI_Ssend(), MPI_Waitall().

3.2.3 The c udgram backend

coNCePTuaL program development on a workstation is facilitated by the c_udgram
backend. c_udgram runs on only a single machine but, unlike c_seq, supports all of coN-
CePTuaL’s communication statements. Communication is performed over Unix-domain
datagram sockets. Unix-domain datagrams are reliable and guarantee order (unlike UDP/IP
datagrams) but have a maximum packet size. c_udgram backend write this maximum to
every log file and automatically packetizes larger messages.

By default, c_udgram produces an executable program that can be run directly from
the command line. When ‘ncptl’ is run with the --no-link option, c_udgram produces
an object file that needs to be linked with the appropriate sockets library (on systems that
require a separate library for socket calls). When ‘ncptl’ is run with the --no-compile

option, c_udgram outputs ANSI C code that must be both compiled and linked. Like all
C-based backends, c_udgram honors the CC, CPPFLAGS, LDFLAGS, and LIBS environment
variables when compiling and linking. Values not found in the environment are taken from
those specified/discovered at configuration time (see Section 2.1 [configure], page 4).

In addition to supporting the default set of command-line options, programs generated
using the c_udgram backend further support a --tasks option that designates the number
of tasks to use:� �

-T, --tasks=<number> Number of tasks to use [default: 1]
 	
c_udgram programs spawn one OS-level process for each task in the program. They also
create a number of sockets in the current directory named ‘c_udgram_〈tag〉’. These are
automatically deleted if the program exits cleanly but will need to be removed manually in
the case that the program is killed by an non-trappable signal.

3.2.4 The c trace backend

While most coNCePTuaL backends are code generators, the c_trace backend adds
tracing code to the code produced by a code-generating backend. c_trace is useful as a
debugging aid and as a means to help understand the control flow of a coNCePTuaL
program.

Chapter 3: Usage 15

Command-line options for c_trace

When ‘ncptl’ is passed --backend=c_trace as a command-line option, c_trace pro-
cesses the following backend-specific command-line options:

--trace=backend
Specify a backend that will produce C code for c_trace to trace. The --trace

option is required to use c_trace; c_trace will issue an error message if
--trace is not specified. The restrictions on backend are that it must pro-
duce C code and must be derived from the c_generic backend (see Section 6.2
[Backend creation], page 94). Improper backends cause c_trace to abort ab-
normally.

--curses Instead of injecting fprintf() statements into the generated C code, inject
calls to the ‘curses’ (or ‘ncurses’) library to show graphically the line of code
currently executing on a given processor.

Default c_trace tracing

Without --curses, c_trace alters the generated C code to write data like the following
to the standard error device:

[TRACE] phys: 1 | virt: 1 | action: RECV | event: 1 / 44001 | lines: 18 - 18
[TRACE] phys: 0 | virt: 0 | action: RESET | event: 1 / 88023 | lines: 17 - 17
[TRACE] phys: 0 | virt: 0 | action: SEND | event: 2 / 88023 | lines: 18 - 18
[TRACE] phys: 0 | virt: 0 | action: RECV | event: 3 / 88023 | lines: 19 - 19
[TRACE] phys: 1 | virt: 1 | action: SEND | event: 2 / 44001 | lines: 19 - 19
[TRACE] phys: 1 | virt: 1 | action: RECV | event: 3 / 44001 | lines: 18 - 18
[TRACE] phys: 0 | virt: 0 | action: CODE | event: 4 / 88023 | lines: 20 - 21
[TRACE] phys: 0 | virt: 0 | action: RESET | event: 5 / 88023 | lines: 17 - 17
[TRACE] phys: 0 | virt: 0 | action: SEND | event: 6 / 88023 | lines: 18 - 18
[TRACE] phys: 0 | virt: 0 | action: RECV | event: 7 / 88023 | lines: 19 - 19

...

The format is designed to be easy to read and easy for a program to parse. Each line of trace
data begins with the string ‘[TRACE]’ and lists the (physical) processor number, the (virtual)
task ID, the action (a.k.a., event type) that is about to be performed, the current event
number and total number of events that will execute on the given processor, and the range of
lines of source code to which the current event corresponds. An “event” corresponds more-
or-less to a statement in the coNCePTuaL language.1 Loops are unrolled at initialization
time and therefore produce no events. Section 6.2.3 [Generated code], page 98, lists and
briefly describes the various event types.

1 A more precise correspondence is to a 〈simple stmt〉 in the formal grammar presented in Chapter 4
[Grammar], page 46.

Chapter 3: Usage 16

c_trace tracing with ‘curses’

The --curses option enables a more interactive tracing environment. Generated pro-
grams must be linked with the ‘curses’ (or compatible, such as ‘ncurses’) library. The
resulting executable supports the following additional command-line options:

-D, --delay=number
delay in milliseconds after each screen update (‘0’=no delay)

-M, --monitor=number
processor number to monitor

-B, --breakpoint=number
source line at which to enter single-stepping mode (‘-1’=none; ‘0’=first event)

When the program is run it brings up a screen like the following:� �
1. # Determine computational "noise"
2.
3. Require language version "0.5.2a".
4.
5. accesses is "Number of data accesses to perform" and comes from
6. "--accesses" or "-a" with default 500000.
7.
8. trials is "Number of timings to take" and comes from "--timings" or
9. "-t" with default 1000.
10.
11. For trials repetitions {
12. all tasks reset their counters then
13. all tasks touch a 1 word memory region accesses times with stride 0 w
14. all tasks log a histogram of elapsed_usecs as "Actual time (usecs)"
15. }

Phys: 0 Virt: 0 Action: RESET Event: 1/3001
 	
The program displays its source code (truncated vertically if too tall and truncated hori-
zontally if too wide) at the top of the screen and a status bar at the bottom of the screen.
As the program executes, a cursor indicates the line of source code that is currently ex-
ecuting. Likewise, the status bar updates dynamically to indicate the processor’s current
task ID, action, and event number. In ‘curses’ mode, the program’s standard output (see
Section 4.5.2 [Writing to standard output], page 71) is suppressed so as not to disrupt the
trace display.

Programs traced with c_trace and the --curses option are made interactive and sup-
port the following (case-insensitive) keyboard commands:

‘S’ Enable single-stepping mode. While single-stepping mode is enabled the traced
processor will execute only one event per keystroke from the user.

‘space’ Disable single-stepping mode. The program executes without further user in-
tervention.

Chapter 3: Usage 17

‘D’ Delete the breakpoint.

‘Q’ Quit the program. The log file will indicate that the program did not run to
completion.

All other keystrokes cause the program to advance to the next event immediately.
A single breakpoint can be set using the program’s -B or --breakpoint command-

line option. Whenever the monitored processor reaches the source-code line at which a
breakpoint has been set, it enters single-stepping mode exactly as if S were pressed. Setting a
breakpoint at line 0 tells the program to begin single-stepping as soon as the program begins.
Note that only lines corresponding to coNCePTuaL events can support breakpoints.

Offline tracing with ‘curses’

The c_trace backend can be told to trace by writing messages to the standard error
device or by employing an interactive display. These two alternatives can be combined to
support offline tracing of a coNCePTuaL program. The idea is to compile the program
without the --curses option. When running the program, the standard-error output should
be redirected to a file. The ‘replaytrace’ utility, which comes with coNCePTuaL, can
then be used to play back the program’s execution by reading and displaying the file of
redirected trace data.

‘replaytrace’ accepts the following command-line options, which correspond closely to
those accepted by a program compiled with the --curses option to c_trace:

--trace=file
Specify a file containing redirected trace data. file defaults to the standard
input device.

--delay=number
Specify the delay in milliseconds after each screen update (‘0’=no delay).

--monitor=processor
Specify the processor number to monitor. processor defaults to ‘0’.

--breakpoint=line
Specify a line of source code at which to enter single-stepping mode (‘-1’=none;
‘0’=first event).

In addition, ‘replaytrace’ requires that the coNCePTuaL source-code file be specified
on the command line, as the source code is not included in the trace data.

The interactive display presented by the offline ‘replaytrace’ tool is nearly identical to
that presented by a program compiled with the --curses option to c_trace.

3.2.5 The interpret backend

Like the c_udgram backend (see Section 3.2.3 [The c udgram backend], page 14), the
interpret backend is designed to help programmers test coNCePTuaL code. The
interpret backend does not output code. As its name implies, interpret is an interpreter
of coNCePTuaL programs rather than a compiler. interpret exhibits the following
salient features:

Chapter 3: Usage 18

1. Some programs run faster than with a compiler because the interpreter does not actu-
ally send messages. interpret merely simulates communication.

2. interpret can simulate massively parallel computer systems from a single process.
3. As interpret runs it checks for common communication errors such as deadlocks,

asynchronous sends and receives that are never completed, and blocking operations
left over at the end of the program (which would cause hung tasks).

The drawbacks are that interpret is slow when interpreting control-intensive programs and
that timing measurements are not indicative of any real network. interpret is intended
primarily as a development tool for helping ensure the correctness of coNCePTuaL pro-
grams.

The interpret backend accepts all of the command-line options described in Section 3.3
[Running coNCePTuaL programs], page 21, plus the following two options:� �

-O, --onlylog=<string> Comma-separated list of processor ranges that
are allowed to write log files [default:
"0-0"]

-T, --tasks=<number> Number of tasks to use [default: 1]
 	
The --tasks option specifies the number of tasks to simulate. Because this number can be
quite large the --onlylog option limits the set of processors that are allowed to create log
files. That way, if task 0 is the only task out of thousands that logs any data, ‘--onlylog=0’
ensures that only one log file will be produced, not thousands. By default, all processors
create a log file.

All other command-line arguments are passed to the program being interpreted.
As an example of the interpret backend’s usage, here’s how to simulate 100,000 pro-

cessors communicating in a simple ring pattern:
% ncptl --backend=interpret --lenient --program=’All tasks t send

nummsgs 1024 gigabyte messages to task t+1 then task num_tasks-1
sends nummsgs 1024 gigabyte messages to task 0.’ --tasks=100000
--nummsgs=5

The preceding command ran to completion in under 3 minutes on a 1.5GHz Xeon unipro-
cessor workstation—not too bad considering that 488 petabytes of data are transmitted
serially on the program’s critical path.

The interpret backend is especially useful for finding communication-related program
errors:

% ncptl --backend=interpret --quiet --program=’All tasks t send
a 10 doubleword message to task (t+1) mod num_tasks.’ --tasks=3

<command line>: The following tasks have deadlocked: 0 --> 2 --> 1
--> 0

Deadlocked tasks are shown with ‘-->’ signifying “is blocked waiting for”. In the preceding
example, all receives are posted before all sends. Hence, task 0 is blocked waiting for task 2
to send it a message. Task 2, in turn, is blocked waiting for task 1 to sent it a message.
Finally, task 1 is blocked waiting for task 0 to send it a message, which creates a cycle of
dependencies.

The interpret backend can find other errors, as well:

Chapter 3: Usage 19

% ncptl --backend=interpret --quiet --program=’All tasks t
asynchronously send a 10 doubleword message to task (t+1) mod
num_tasks.’ --tasks=4

<command line>: The program ended with the following leftover-event
errors:
* Task 0 posted a asynchronous SEND which was never waited for
* Task 0 posted a asynchronous RECEIVE which was never waited for
* Task 1 posted a asynchronous SEND which was never waited for
* Task 1 posted a asynchronous RECEIVE which was never waited for
* Task 2 posted a asynchronous SEND which was never waited for
* Task 2 posted a asynchronous RECEIVE which was never waited for
* Task 3 posted a asynchronous SEND which was never waited for
* Task 3 posted a asynchronous RECEIVE which was never waited for

% ncptl --backend=interpret --quiet --program=’Task 0 sends a 40
kilobyte message to unsuspecting task 1 then task 0 receives a 40
kilobyte message from task 1.’ --tasks=2

<command line>: The program ended with the following leftover-event
errors:
* Task 0 sent to task 1 a message which was never received
* The program ended with task 0 blocked on a RECEIVE

In short, it is well worth testing the correctness of new coNCePTuaL programs with
interpret before performing timing runs with one of the message-passing backends.

3.2.6 The dot backend

The dot backend generates code, but not executable code. DOT (described in
http://www.research.att.com/sw/tools/graphviz/dotguide.pdf) is a format for
describing graphs in terms of their edges and vertices. The tools in the Graphviz suite
(available from http://www.research.att.com/sw/tools/graphviz/) typeset DOT
files in a variety of output formats and using a variety of graph-layout algorithms.
coNCePTuaL’s dot backend outputs in DOT format the abstract-syntax tree
corresponding to a given coNCePTuaL program. As an example, dot renders the
one-line coNCePTuaL program ‘TASK 0 SLEEPS FOR 10 SECONDS.’ as follows:

Chapter 3: Usage 20

integer 0
line 1

expr
line 1

task
line 1

integer 10
line 1

expr
line 1

time_unit SECONDS
line 1

sleeps_for
line 1

simple_stmt
line 1

top_level_complex_stmt
line 1

complex_stmt_list
line 1

program
line 1

dot is expected to be of particular use to backend developers, who can use it to help
prioritize the methods that need to be implemented (i.e., implementing first the AST node
types needed by in a trivial program, then those needed by successively more complex
programs).

The dot backend accepts the following options from the ‘ncptl’ command line:

--format=dot format
The programs in the Graphviz suite can output graphs in a variety of for-
mats such as PostScript, SVG, and PNG. By default, the dot backend outputs
PostScript. The --format option specifies an alternate format to use. At the
time of this writing, the Graphviz programs support the following formats:
canon, cmap, dot, fig, gd, gd2, gif, hpgl, imap, ismap, jpeg, jpg, mif, mp,
pcl, pic, plain, plain-ext, png, ps, ps2, svg, svgz, vrml, vtx, wbmp, and
xdot. See the Graphviz documentation for more information about these for-
mats.

--extra-dot=dot code
The dot backend’s --extra-dot option enables the user to inject arbitrary
DOT code into the generated file. For example, specifying --extra-dot="node
[shape=Mrecord]"2 tells DOT to use draw nodes as rounded rectangles
and specifying --extra-dot=’edge [color="green"]’ colors all edges
green. --extra-dot can be specified repeatedly on the command line; dot
concatenates all of the extra DOT code with intervening semicolons.

2 dot automatically places a semicolon after the extra DOT code.

Chapter 3: Usage 21

--no-lines

By default, each AST node indicates the lines in the program’s source code
to which it corresponds. The --no-lines option suppresses the outputting of
source-code line numbers.

--no-attrs

Every node in the AST has a type. Some nodes additionally have an attribute.
dot normally outputs attributes but --no-attrs prevents dot from doing so.

The DOT environment variable names the Graphviz program that dot should run on
the generated code. If DOT is not set, dot uses whatever value was specified/discovered at
configuration time (see Section 2.1 [configure], page 4), with the default being ‘dot’. By
default, dot produces DOT code and runs this through the designated Graphviz program
to produce a PostScript file (or whatever format is named by the --format option). If
‘ncptl’ is run with either the --no-link or --no-compile options, it produces a DOT file
that should be run manually through ‘dot’ or another Graphviz tool.

3.3 Running coNCePTuaL programs

coNCePTuaL programs can be run like any other program built with the same com-
piler and communication library. For example if a program ‘myprog’ was built with coN-
CePTuaL’s C+MPI backend, the program might be run with a command like mpirun -np

nodes myprog or prun -Nnodes myprog or pdsh -w node list myprog. The important point
is that job launching is external to coNCePTuaL. A coNCePTuaL program is oblivious
to whether it is being run with a single thread on each multiprocessor node or with one
thread on each CPU, for example. However, coNCePTuaL log files do include the host
name in the header comments (see Section 3.4.1 [Log-file format], page 23) so job-launching
parameters can potentially be inferred from those.

coNCePTuaL programs automatically support a “help” option. This is usually speci-
fied as --help, -h, or -?, depending on which option-parsing library ‘configure’ configured
in. The output of running myprog --help most likely looks something like this:� �
Usage: myprog [OPTION...]

-C, --comment=<string> Additional commentary to write to the log
file, @FILE to import commentary from FILE,
or !COMMAND to import commentary from COMMAND
(may be specified repeatedly)

-L, --logfile=<string> Log file template [default: "a.out-%p.log"]
-N, --no-trap=<string> List of signals that should not be trapped

[default: ""]
-S, --seed=<number> Seed for the random-number generator

[default: 0]
-W, --watchdog=<number> Number of minutes after which to kill the job

(-1=never) [default: -1]

Help options:
-?, --help Show this help message
--usage Display brief usage message
 	

Chapter 3: Usage 22

Although a coNCePTuaL program can specify its own command-line options (see Sec-
tion 4.8.2 [Command-line arguments], page 86), a few are provided by default. In addition
to --help these include --comment, --logfile, --no-trap, --seed, and --watchdog:

--comment

--comment makes it possible to add arbitrary commentary to a log file.
This is useful for incorporating information that coNCePTuaL would be
unable to (or simply does not currently) determine on its own, for example,
--comment="Last experiment before upgrading the network device

driver". Two special cases are supported:
1. If the comment string begins with ‘@’ then the remainder of the

string is treated as a filename. Each line of the corresponding file is
treated as a separate comment string. Hence, if the file ‘sysdesc.txt’
contains the lines ‘Using FooBarNet’ and ‘Quux is enabled’, then
specifying --comment=sysdesc.txt is equivalent to specifying both
--comment="Using FooBarNet" and --comment="Quux is enabled".

2. If the comment string begins with ‘!’ then the remainder of the string
is treated as a shell command. The command is executed and each line
of its output is treated as a separate comment string. For example,
--comment=’!lspci | grep -i net’ executes ‘lspci’, extracts only
those lines containing the string ‘net’, and makes log-file comments
out of the result. Note that --comment=’!command’ differs from
--comment="‘command‘" in that the former causes command to be
executed individually by each process in the program while the latter
executes command only once and only before launching the program.
Also note that ‘!’ must be escaped in ‘csh’ and derivitive shells (i.e.,
--comment=’\!command’).

--logfile

--logfile specifies a template for naming log files. Each task maintains a
log file based on the template name but with ‘%p’ replaced with the processor
number, ‘%r’ replaced with the run number (the smallest nonnegative integer
that produces a filename which does not already exist), and ‘%%’ replaced with
a literal “%” character. The program outputs an error message and aborts if
the log-file template does not contain at least one ‘%p’. The only exception is
that an empty template (i.e., --logfile="") inhibits the production of log files
entirely.

--no-trap

--no-trap specifies a list of signals or ranges of signals that should not be
trapped. For example, --no-trap=10-12,17 prevents signals 10, 11, 12, and
17 from being trapped.3 Signals can also be referred to by name, with or with-
out a ‘SIG’ prefix. Also, names and numbers can be freely mixed. Hence,
--no-trap=10-12,INT,17,SIGSTOP,SIGCONT is a valid argument to a coN-
CePTuaL program. Because signal reception can adversely affect performance,
coNCePTuaL’s default behavior is to terminate the program on receipt of a

3 On some platforms, these signals correspond to SIGUSR1, SIGSEGV, SIGUSR2, and SIGCHLD, respectively.

Chapter 3: Usage 23

signal. However, some signals may be necessary for the underlying communica-
tion layer’s proper operation. --no-trap enables such signals to pass through
coNCePTuaL untouched. (Some signals, however, are needed by coNCeP-
TuaL or by a particular backend and are always trapped.)

--seed --seed (which selects a different default value on each run) is used in any
program that utilizes the RANDOM TASK construct (see Section 4.7.3 [Binding
variables], page 83) or that sends message WITH VERIFICATION (see Section 4.4.1
[Message specifications], page 63).

--watchdog

--watchdog is useful when batch-submitting a sequence of coNCePTuaL jobs
as it prevents a hung program (caused, for example, by data corruption within
the messaging layer, deadlock within the program’s communication pattern, or
an undetected error in the network hardware) from preventing the remaining
jobs from running.

3.4 Interpreting coNCePTuaL log files

Any coNCePTuaL program that uses the LOGS keyword (see Section 4.5.3 [Writing
to a log file], page 71) will produce a log file as it runs. The coNCePTuaL run-time
library writes log files in a simple, plain-text format. In addition to measurement data, a
wealth of information is stored within log-file comments. coNCePTuaL comes with a tool,
‘logextract’, which can extract data and other information from a log file and convert it
into any of a variety of other formats.

3.4.1 Log-file format

The coNCePTuaL run-time library writes log files in the following (textual) format:

• Lines beginning with ‘#’ are comments.
• Columns are separated by commas.
• Strings are output between double quotes. Literal double-quotes are output as ‘\"’ and

literal backslashes are output as ‘\\’.

A sample log file is listed below. The log file is presented in its entirety.
###
===================
coNCePTuaL log file
===================
coNCePTuaL version: 0.5.2
coNCePTuaL backend: c_mpi (C + MPI)
Executable name: /home/pakin/src/coNCePTuaL/example
Working directory: /home/pakin/src/coNCePTuaL
Command line: example
Number of tasks: 2
Processor (0<=P<tasks): 0
Host name: a1
Operating system: Linux 2.4.21-3.5qsnet #2 SMP Thu Aug 7 10:51:04 MDT 2003

Chapter 3: Usage 24

CPU vendor: GenuineIntel
CPU architecture: ia64
CPU model: 1
CPU count: 2
CPU frequency: 1300000000 Hz (1.3 GHz)
Cycle-counter frequency: 1300000000 Hz (1.3 GHz)
OS page size: 16384 bytes
Physical memory: 2047901696 bytes (1.9 GB)
Library compiler+linker: /usr/bin/gcc
Library compiler options: -Wall -W -g -O3
Library linker options: -lpapi -lm -lpopt
Library compiler mode: LP64
Dynamic libraries used: /usr/local/lib/libpapi.so /lib/libm-2.2.4.so /usr/lib/libpopt.so.0.0.0 /usr/lib/mpi/mpi_intel/lib/libmpi.so.1.0 /usr/lib/qsnet/elan3/lib/libelan.so.1 /lib/libc-2.2.4.so /opt/intel-7.1.033/compiler70/ia64/lib/libcxa.so.4 /usr/lib/qsnet/elan3/lib/librmscall.so.1 /usr/lib/qsnet/elan3/lib/libelan3.so.1 /usr/lib/qsnet/elan/lib/libelanctrl.so.2 /lib/ld-2.2.4.so
Microsecond timer type: inline assembly code
Average microsecond timer overhead: <1 microsecond
Microsecond timer increment: 1.00986 +/- 0.298216 microseconds (ideal: 1 +/- 0)
Minimum sleep time: 1952.44 +/- 2.51794 microseconds (ideal: 1 +/- 0)
WARNING: Sleeping exhibits poor granularity (not a serious problem).
WARNING: Sleeping has a large error component (not a serious problem).
Process CPU timer: getrusage()
Process CPU-time increment: 976.55 +/- 0.5 microseconds (ideal: 1 +/- 0)
WARNING: Process timer exhibits poor granularity (not a serious problem).
Log file template: example-%p.log
Number of minutes after which to kill the job (-1=never): -1
List of signals that should not be trapped: 14
MPI send routine: MPI_Send()
Compilation command line: /usr/lib/mpi/mpi_gnu/bin/mpicc -I/tmp/ncptl/include -I/usr/local/include -Wall -W -g -O3 example.c -L/tmp/ncptl/lib -lncptl -lpapi -lm -lpopt -o example
Log creator: Scott Pakin
Log creation time: Mon Sep 13 19:12:49 2004
#
Environment variables

CVS_RSH: /usr/bin/ssh
DISPLAY: localhost:10.0
DYNINSTAPI_RT_LIB: /home/pakin/dyninstAPI-3.0/lib/i386-unknown-linux2.2/libdyninstAPI_RT.so.1
DYNINST_ROOT: /home/pakin/dyninstAPI-3.0
EDITOR: /usr/bin/emacs
GROUP: CCS3
HOME: /home/pakin
HOST: a0
HOSTNAME: a0
HOSTTYPE: unknown
KDEDIR: /usr
LANG: en_US
LD_LIBRARY_PATH: /users/pakin/lib:/usr/lib:/usr/ccs/lib:/opt/SUNWspro/lib:/usr/dt/lib:/usr/openwin/lib:/usr/X11R6/lib:/usr/local/gnu/lib:/usr/local/lib:/usr/ucblib:/users/pakin/dyninstAPI-3.0/lib/i386-unknown-linux2.2
LESSOPEN: |/usr/bin/lesspipe.sh %s
LOGNAME: pakin
LPDEST: lwy
LS_COLORS: no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:bd=40;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=01;32:*.cmd=01;32:*.exe=01;32:*.com=01;32:*.btm=01;32:*.bat=01;32:*.sh=01;32:*.csh=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;31:*.taz=01;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.bz2=01;31:*.bz=01;31:*.tz=01;31:*.rpm=01;31:*.cpio=01;31:*.jpg=01;35:*.gif=01;35:*.bmp=01;35:*.xbm=01;35:*.xpm=01;35:*.png=01;35:*.tif=01;35:

Chapter 3: Usage 25

MACHTYPE: unknown
MAIL: /var/mail/pakin
MANPATH: /usr/man:/opt/SUNWspro/man:/usr/dt/man:/usr/openwin/man:/usr/X11R6/man:/usr/local/gnu/man:/usr/local/man:/usr/share/man:/usr/lanl/man
MOZILLA_HOME: /usr/local/netscape/java
NAME: Scott Pakin
ORGANIZATION: Los Alamos National Lab
OSTYPE: linux
PATH: .:/home/pakin/bin:/usr/local/bin:/usr/dt/bin:/usr/openwin/bin:/usr/X11R6/bin:/usr/local/gnu/bin:/usr/local/bin:/sbin:/bin:/opt/SUNWspro/bin:/usr/sbin:/usr/bin:/usr/ccs/bin:/usr/ucb:/usr/local/teTeX/bin:.:/usr/lanl/bin
PRINTER: lwy
PVM_ROOT: /usr/share/pvm3
PVM_RSH: /usr/bin/rsh
PWD: /home/pakin/src/coNCePTuaL
QTDIR: /usr/lib/qt-2.3.1
REMOTEHOST: antero.c3.lanl.gov
RMS_JOBID: 24286
RMS_MACHINE: a
RMS_NNODES: 2
RMS_NODEID: 0
RMS_NPROCS: 2
RMS_PROCID: 0
RMS_RANK: 0
RMS_RESOURCEID: parallel.25183
RMS_STOPONELANINIT: 0
SHELL: /bin/tcsh
SHLVL: 2
SSH_AGENT_PID: 24930
SSH_ASKPASS: /usr/libexec/openssh/gnome-ssh-askpass
SSH_AUTH_SOCK: /tmp/ssh-XXByeFZc/agent.24905
SSH_CLIENT: 128.165.20.177 34362 22
SSH_TTY: /dev/pts/0
SUPPORTED: en_US:en
TERM: xterm
TZ: MST7MDT
USER: pakin
VENDOR: unknown
#
coNCePTuaL source code

FOR 10 REPETITIONS {
TASK 0 RESETS ITS COUNTERS THEN
TASK 0 SENDS A 0 BYTE MESSAGE TO TASK 1 THEN
TASK 1 SENDS A 0 BYTE MESSAGE TO TASK 0 THEN
TASK 0 LOGS EACH elapsed_usecs/2 AS "Latency (usecs)"
}
#
###
"Latency (usecs)"
"(all data)"
194.5

Chapter 3: Usage 26

5.5
5.5
5
5
5
5.5
5
5
5
###
Program exited normally.
Log completion time: Mon Sep 13 19:12:49 2004
Elapsed time: 0 seconds
Process CPU usage (user+system): 0 seconds
Task IDs assigned to processor 0: 0
Processors assigned to task ID 0: 0
###

As the preceding example indicates, a log file’s comment block can be divided into
multiple stanzas:
• a list of 〈key :value〉 pairs that describe various characteristics of the run-time environ-

ment, including hardware and software identification, timer quality, values of command-
line arguments, and a timestamp

• a dump of the environment variables active when the program ran
• the complete coNCePTuaL source program

Two rows of headers and the measurement data follow the comment block and a brief trailer
comment completes the log file.

The motivation for writing so much information to the log file is to facilitate reproduc-
tion of the experiment. The ideal situation is for a third party to be able to look at a
coNCePTuaL log file and from that, recreate the original experiment and get identical
results.

Some of the comments that may benefit from additional explanation include the follow-
ing:

‘Library compiler mode’
‘LP64’ means “Long integers and Pointers contain exactly 64 bits while ordi-
nary integers contain exactly 32 bits”. ‘ILP32’ means “ordinary Integers, Long
integers, and Pointers all contain exactly 32 bits”. The library compiler mode
will be ‘nonstandard’ for any other combination of datatype sizes.

‘Average timer overhead’
During initialization, the coNCePTuaL run-time library performs some cal-
ibration routines. Among these routines is a measurement of the quality of
whatever mechanisms the library is using to measure elapsed time. In the sam-
ple log file presented above, the mechanism used was ‘inline assembly code’,
meaning the run-time library reading the hardware cycle counter without going

Chapter 3: Usage 27

through a standard library or system call. Some alternative mechanisms include
get_cycles(), PAPI_get_real_usec(), clock_gettime(CLOCK_SGI_CYCLE),
clock_gettime(CLOCK_REALTIME), and gettimeofday(). Not every platform
supports every mechanism; the coNCePTuaL ‘configure’ script selects the
“best” mechanism (determined statically) from those available.

The log file then reports “average timer overhead” as the mean time between
back-to-back invocations of whichever timer routine is being used. Ideally, the
mean should be ‘<1 microsecond’ but this is not the case on all systems. Large
values indicate that a performance penalty is charged every time a coNCeP-
TuaL program reads the timer.

‘Timer increment’
In addition to measuring the overhead of reading the timer, the coNCePTuaL
run-time library also measures timer accuracy. The library expects to be able
to read the timer with microsecond accuracy. That is, the time reported should
not increase by more than a microsecond between successive readings of the
timer. To gauge timer accuracy, the library’s initialization routine performs a
number of back-to-back invocations of the timer routine and reports the mean
and standard deviation of the number of microseconds that elapsed between
readings, discarding any deltas of zero microseconds. Ideally, the microsecond
timer, when read multiple times in rapid succession, should report nonzero
increments of exactly one microsecond with no variation. The log file will
contain warning messages if the increment or standard deviation are excessively
large, as this may indicate a large margin of error in the measurement data.

‘Process CPU-time increment’
‘Process CPU usage (user+system)’

Log files end with a trailer section that includes ‘Process CPU usage
(user+system)’, which indicates the subset of total wall-clock time for
which the program was running (‘user’) or for which the operating system
was running on the program’s behalf (‘system’). The log-file header reports
as ‘Process CPU-time increment’ the resolution of the timer user to
report process CPU time. Note that process CPU time is not exported to
coNCePTuaL programs; it is therefore much less critical than the wall-clock
timer and is reported primarily for informational purposes.

‘Task IDs assigned to processor 〈number〉’
‘Processors assigned to task ID 〈number〉’

coNCePTuaL distinguishes between “processors” and “tasks”. A “processor”
typically corresponds to a physical CPU but may be virtualized as a thread or
a process by the underlying communication layer. Each processor is referred to
by a unique number from 0 up to (but not including) the total number of pro-
cessors available to the program. Processor IDs are assigned by the underlying
communication layer so they may actually be MPI ranks in an MPI program
or thread IDs in an OpenMP program. Because job launching is external to
coNCePTuaL, a program has no knowledge of how processor IDs are mapped
to physical processors. Processor IDs do not change over the lifetime of the
program. coNCePTuaL programs do not generally refer to processors but

Chapter 3: Usage 28

rather to tasks. A task ID is like a processor in that it is a unique number from
0 up to (but not including) the number of processors in the program. However,
coNCePTuaL programs have explicit control over the assignment of task IDs
to processors and can alter the mapping at any point in the program (see Sec-
tion 4.6.5 [Reordering task IDs], page 76). When a coNCePTuaL program
begins, processor IDs and task IDs are equal.
As a debugging aid, each task that writes a log file outputs as ‘Task IDs
assigned to processor 〈number〉’ the task IDs that were assigned to it dur-
ing the course of the program’s execution. However, showing task IDs from the
perspective of a given processor can be confusing, as coNCePTuaL programs
express processors from the perspective of a given task ID. Each processor there-
fore additionally outputs ‘Processors assigned to task ID 〈number〉’ which
shows the more intuitive task ID→processor mapping. Note, however, that the
process that outputs ‘Processors assigned to task ID 〈number〉’ is the pro-
cess that originally had task ID 〈number〉; the task ID may have been changed
during the program’s execution.

3.4.2 ‘logextract’

To facilitate converting coNCePTuaL log files into input data for other applications,
coNCePTuaL provides a Perl script called ‘logextract’. ‘logextract’ can extract the
data from a log file—as well as various information that appears in the log file’s comments—
into a variety of formats suitable for graphing or typesetting.

Running logextract --usage causes ‘logextract’ to list a synopsis of its core
command-line options to the standard output device; running logextract --help

produces basic usage information; and, running logextract --man outputs a complete
manual page. The following pages show the ‘logextract’ documentation as produced by
logextract --man.

Chapter 3: Usage 29

NAME

logextract - Extract various bits of information from a coNCePTuaL log file

SYNOPSIS

logextract --usage | --help | --man

logextract [--extract=[data|params|source|warnings]] [--format=format] [format-
specific options...] [--before=string] [--after=string] [--force-merge[=number]] [
--output=filename] [filename...]

DESCRIPTION

Background coNCePTuaL is a domain-specific programming language designed to
facilitate writing networking benchmarks and validation suites. coNCePTuaL programs
can log data to a file but in only a single file format. ‘logextract’ extracts this log data
and outputs it in a variety of formats for use with other applications.

The coNCePTuaL-generated log files that serve as input to ‘logextract’ are plain
ASCII files. Syntactically, they contain a number of newline-separated tables. Each table
contains a number of newline-separated rows of comma-separated columns. This is known
generically as comma-separated value or CSV format. Each table begins with two rows of
header text followed by one or more rows of numbers. Text is written within double quotes.
Double-quote characters and backslashes within text are escaped with a backslash. No
other escaped characters are recognized. Lines that begin with # are considered comments.

Semantically, there are four types of data present in every coNCePTuaL-generated log
file:

1. The complete source code of the coNCePTuaL program that produced the log file

2. Characteristics of the run-time environment and the values of all command-line param-
eters

3. A list of warning messages that coNCePTuaL issued while analyzing the run-time
environment

4. One or more tables of measurement data produced by the coNCePTuaL program

The first three items appear within comment lines. The measurement data is written in
CSV format.

Extracting information from coNCePTuaL log files It is common to want to extract in-
formation (especially measurement data) from log files. For simple formatting operations, a
one-line awk or Perl script suffices. However, as the complexity of the formatting increases,
the complexity of these scripts increases even more. That’s where ‘logextract’ fits in.
‘logextract’ makes it easy to extract any of the four types of log data described above and
format it in variety of ways. Although the number of options that ‘logextract’ supports
may be somewhat daunting, it is well worth learning how to use ‘logextract’ to avoid rein-
venting the wheel every time a coNCePTuaL log file needs to be processed. ‘logextract’
takes care of all sorts of special cases that crop up when manipulating coNCePTuaL log
files.

Chapter 3: Usage 30

OPTIONS

‘logextract’ accepts the following command-line options regardless of what data is
extracted from the log file and what formatting occurs:

-h, --help
Output the Synopsis section and the Options section, then exit the program.

-m, --man Output a complete Unix man (“manual”) page for ‘logextract’, then exit the
program.

-e info, --extract=info
Specify what sort of data should be extracted from the log file. Acceptable
values for info are listed and described in the Additional Options section and
include data, params, env, and source.

-f format, --format=format
Specify how the extracted data should be formatted. Valid arguments depend
upon the value passed to --extract and include such formats as csv, html,
latex, text, and bash. See the Additional Options section for details, expla-
nations, and descriptions of applicability.

-b string, --before=string
Output an arbitrary string of text before any other output. string can contain
escape characters such as \n for newline, \t for tab, and \\ for backslash.

-a string, --after=string
Output an arbitrary string of text after all other output. string can contain
escape characters such as \n for newline, \t for tab, and \\ for backslash.

-F [number], --force-merge[=number]
Try extra hard to merge multiple log files, even if they seem to have been
produced by different programs or in different execution environments. This
generally implies padding empty rows and columns with blanks. However, if
--force-merge is given a numeric argument, the value of that argument is
used instead of blanks to pad empty locations. Note that --force-merge is
different from --force-merge=0 because data-merging functions (mean, max,
etc.) ignore blanks but consider zeroes.

--output=filename
‘logextract’ normally writes to the standard output device. The --output

option redirects ‘logextract’’s output to a file.

The above is merely a terse summary of ‘logextract’’s command-line options. The
reader is directed to the Additional Options section for descriptions of the numerous ways
that ‘logextract’ can format information. Note that --extract and --format are the two
most common options as they specify what to extract and how to format it; most of the
remaining options in the Additional Options section exist to provide precise control over
formatting details.

ADDITIONAL OPTIONS

‘logextract’’s command-line options follow a hierarchy. At the top level is --extract,
which specifies which of the four types of data ‘logextract’ should extract. Next, --format

Chapter 3: Usage 31

specifies how the extracted data should be formatted. Valid values for --format differ based
on the argument to --extract. Finally, there are various format-specific options that fine-
tune the formatted output. Each output format accepts a different set of options. Many of
the options appear at multiple places within the hierarchy, although usually with different
default values.

The following hierarchical list describes all of the valid combinations of --extract,
--format, and the various format-specific options:

--extract=data [default]
Extract measurement data

--format=csv [default]
Output each table in comma-separated-value format

--noheaders

Do not output column headers

--colbegin=string
Override the text placed at the beginning of each data
column [default: “”]

--colsep=string
Override the text used to separate data columns [de-
fault: “,”]

--colend=string
Override the text placed at the end of each data column
[default: “”]

--rowbegin=string
Override the text placed at the beginning of each data
row [default: “”]

--rowsep=string
Override the text used to separate data rows [default:
“”]

--rowend=string
Override the text placed at the end of each data row
[default: “\\n”]

--hcolbegin=string
Override the text placed at the beginning of each
header column [default: same as colbegin]

--hcolsep=string
Override the text used to separate header columns [de-
fault: same as colsep]

--hcolend=string
Override the text placed at the end of each header col-
umn [default: same as colend]

Chapter 3: Usage 32

--hrowbegin=string
Override the text placed at the beginning of each
header row [default: same as rowbegin]

--hrowsep=string
Override the text used to separate header rows [default:
same as rowsep]

--hrowend=string
Override the text placed at the end of each header row
[default: same as rowend]

--tablebegin=string
Override the text placed at the beginning of each table
[default: “”]

--tablesep=string
Override the text used to separate tables [default: “”]

--tableend=string
Override the text placed at the end of each table [de-
fault: “\\n”]

--quote=string
Override the text used to begin quoted text [default:
“"”]

--unquote=string
Override the text used to end quoted text [default:
same as quote]

--excel Output strings in a format readable by Microsoft Excel

--merge=function
Specify how to merge data from multiple files [default:
“mean”]

--showfnames=option
Add an extra header row showing the filename the data
came from [default: “none”]

--format=tsv
Output each table in tab-separated-value format

--noheaders

Do not output column headers

--colbegin=string
Override the text placed at the beginning of each data
column [default: “”]

--colsep=string
Override the text used to separate data columns [de-
fault: “\\t”]

Chapter 3: Usage 33

--colend=string
Override the text placed at the end of each data column
[default: “”]

--rowbegin=string
Override the text placed at the beginning of each data
row [default: “”]

--rowsep=string
Override the text used to separate data rows [default:
“”]

--rowend=string
Override the text placed at the end of each data row
[default: “\\n”]

--hcolbegin=string
Override the text placed at the beginning of each
header column [default: same as colbegin]

--hcolsep=string
Override the text used to separate header columns [de-
fault: same as colsep]

--hcolend=string
Override the text placed at the end of each header col-
umn [default: same as colend]

--hrowbegin=string
Override the text placed at the beginning of each
header row [default: same as rowbegin]

--hrowsep=string
Override the text used to separate header rows [default:
same as rowsep]

--hrowend=string
Override the text placed at the end of each header row
[default: same as rowend]

--tablebegin=string
Override the text placed at the beginning of each table
[default: “”]

--tablesep=string
Override the text used to separate tables [default: “”]

--tableend=string
Override the text placed at the end of each table [de-
fault: “\\n”]

--quote=string
Override the text used to begin quoted text [default:
“"”]

Chapter 3: Usage 34

--unquote=string
Override the text used to end quoted text [default:
same as quote]

--excel Output strings in a format readable by Microsoft Excel

--merge=function
Specify how to merge data from multiple files [default:
“mean”]

--showfnames=option
Add an extra header row showing the filename the data
came from [default: “none”]

--format=html
Output each table in HTML table format

--noheaders

Do not output column headers

--colbegin=string
Override the text placed at the beginning of each data
column [default: “<td>”]

--colsep=string
Override the text used to separate data columns [de-
fault: “ ”]

--colend=string
Override the text placed at the end of each data column
[default: “</td>”]

--rowbegin=string
Override the text placed at the beginning of each data
row [default: “<tr>”]

--rowsep=string
Override the text used to separate data rows [default:
“”]

--rowend=string
Override the text placed at the end of each data row
[default: “</tr>\\n”]

--hcolbegin=string
Override the text placed at the beginning of each
header column [default: “<th>”]

--hcolsep=string
Override the text used to separate header columns [de-
fault: same as colsep]

--hcolend=string
Override the text placed at the end of each header col-
umn [default: “</th>”]

Chapter 3: Usage 35

--hrowbegin=string
Override the text placed at the beginning of each
header row [default: same as rowbegin]

--hrowsep=string
Override the text used to separate header rows [default:
same as rowsep]

--hrowend=string
Override the text placed at the end of each header row
[default: same as rowend]

--tablebegin=string
Override the text placed at the beginning of each table
[default: “<table>\\n”]

--tablesep=string
Override the text used to separate tables [default: “”]

--tableend=string
Override the text placed at the end of each table [de-
fault: “</table>\\n”]

--quote=string
Override the text used to begin quoted text [default:
“”]

--unquote=string
Override the text used to end quoted text [default:
same as quote]

--merge=function
Specify how to merge data from multiple files [default:
“mean”]

--showfnames=option
Add an extra header row showing the filename the data
came from [default: “none”]

--format=octave
Output each table as an Octave text-format data file

--noheaders

Do not output column headers

--colbegin=string
Override the text placed at the beginning of each data
column [default: “”]

--colsep=string
Override the text used to separate data columns [de-
fault: “”]

--colend=string
Override the text placed at the end of each data column
[default: “\\n”]

Chapter 3: Usage 36

--rowbegin=string
Override the text placed at the beginning of each data
row [default: “”]

--rowend=string
Override the text placed at the end of each data row
[default: “”]

--hcolbegin=string
Override the text placed at the beginning of each
header column [default: “”]

--hcolsep=string
Override the text used to separate header columns [de-
fault: “_”]

--hcolend=string
Override the text placed at the end of each header col-
umn [default: “”]

--hrowbegin=string
Override the text placed at the beginning of each
header row [default: “# ”]

--hrowsep=string
Override the text used to separate header rows [default:
“”]

--hrowend=string
Override the text placed at the end of each header row
[default: “\\n”]

--tablebegin=string
Override the text placed at the beginning of each table
[default: “”]

--tablesep=string
Override the text used to separate tables [default:
“\\n”]

--tableend=string
Override the text placed at the end of each table [de-
fault: “”]

--quote=string
Override the text used to begin quoted text [default:
“”]

--unquote=string
Override the text used to end quoted text [default:
same as quote]

--merge=function
Specify how to merge data from multiple files [default:
“mean”]

Chapter 3: Usage 37

--showfnames=option
Add an extra header row showing the filename the data
came from [default: “none”]

--format=custom
Output each table in a completely user-specified format

--noheaders

Do not output column headers

--colbegin=string
Specify the text placed at the beginning of each data
column [default: “”]

--colsep=string
Specify the text used to separate data columns [default:
“”]

--colend=string
Specify the text placed at the end of each data column
[default: “”]

--rowbegin=string
Specify the text placed at the beginning of each data
row [default: “”]

--rowsep=string
Specify the text used to separate data rows [default:
“”]

--rowend=string
Specify the text placed at the end of each data row
[default: “”]

--hcolbegin=string
Specify the text placed at the beginning of each header
column [default: same as colbegin]

--hcolsep=string
Specify the text used to separate header columns [de-
fault: same as colsep]

--hcolend=string
Specify the text placed at the end of each header col-
umn [default: same as colend]

--hrowbegin=string
Specify the text placed at the beginning of each header
row [default: same as rowbegin]

--hrowsep=string
Specify the text used to separate header rows [default:
same as rowsep]

Chapter 3: Usage 38

--hrowend=string
Specify the text placed at the end of each header row
[default: same as rowend]

--tablebegin=string
Specify the text placed at the beginning of each table
[default: “”]

--tablesep=string
Specify the text used to separate tables [default: “”]

--tableend=string
Specify the text placed at the end of each table [default:
“”]

--quote=string
Specify the text used to begin quoted text [default: “”]

--unquote=string
Specify the text used to end quoted text [default: same
as quote]

--excel Output strings in a format readable by Microsoft Excel

--merge=function
Specify how to merge data from multiple files [default:
“mean”]

--showfnames=option
Add an extra header row showing the filename the data
came from [default: “none”]

--format=latex
Output each table as a LATEX tabular environment

--dcolumn

Use the dcolumn package to align numbers on the dec-
imal point

--booktabs

Use the booktabs package for a more professionally
typeset look

--longtable

Use the longtable package to enable multi-page tables

--merge=function
Specify how to merge data from multiple files [default:
“mean”]

--showfnames=option
Add an extra header row showing the filename the data
came from [default: “none”]

--extract=params
Extract the program’s run-time parameters and environment variables

Chapter 3: Usage 39

--format=text [default]
Output the parameters in plain-text format

--include=filename
Read from a file the list of keys to output

--exclude=regexp
Ignore any keys whose name matches a regular expres-
sion

--sort Sort the list of parameters alphabetically by key

--noenv Exclude environment variables

--noparams

Exclude run-time parameters

--envformat=template
Format environment variable names using the given
template [default: “%s (environment variable)”]

--columns=number
Output the parameters as a 1-, 2-, or 3-column table
[default: 1]

--colsep=string
Override the text used to separate data columns [de-
fault: “: ”]

--rowbegin=string
Override the text that’s output at the start of each data
row [default: “”]

--rowend=string
Override the text that’s output at the end of each data
row [default: “\\n”]

--format=dumpkeys
Output a list of the keys only (i.e., no values)

--include=filename
Read the list of parameters to output from a given file

--exclude=regexp
Ignore any keys whose name matches a regular expres-
sion

--envformat=template
Format environment variable names using the given
template [default: “%s (environment variable)”]

--sort Sort the list of parameters alphabetically by key

--noenv Exclude environment variables

--noparams

Exclude run-time parameters

Chapter 3: Usage 40

--format=latex
Output the parameters as a LATEX tabular environment

--include=filename
Read from a file the list of keys to output

--exclude=regexp
Ignore any keys whose name matches a regular expres-
sion

--envformat=template
Format environment variable names using the given
template [default: “%s (environment variable)”]

--sort Sort the list of parameters alphabetically by key

--booktabs

Use the booktabs package for a more professionally
typeset look

--tabularx

Use the tabularx package to enable line wraps within
the value column

--longtable

Use the longtable package to enable multi-page tables

--noenv Exclude environment variables

--noparams

Exclude run-time parameters

--extract=env
Extract the environment in which the program was run

--format=sh [default]
Use Bourne shell syntax for setting environment variables

--newlines

Separate commands with newlines instead of
semicolons

--unset Unset all other environment variables

--chdir Switch to the program’s original working directory

--format=bash
Use Bourne Again shell syntax for setting environment variables

--newlines

Separate commands with newlines instead of
semicolons

--unset Unset all other environment variables

--chdir Switch to the program’s original working directory

Chapter 3: Usage 41

--format=ksh
Use Korn shell syntax for setting environment variables

--newlines

Separate commands with newlines instead of
semicolons

--unset Unset all other environment variables

--chdir Switch to the program’s original working directory

--format=csh
Use C shell syntax for setting environment variables

--newlines

Separate commands with newlines instead of
semicolons

--unset Unset all other environment variables

--chdir Switch to the program’s original working directory

--format=zsh
Use Z shell syntax for setting environment variables

--newlines

Separate commands with newlines instead of
semicolons

--unset Unset all other environment variables

--chdir Switch to the program’s original working directory

--format=tcsh
Use tcsh syntax for setting environment variables

--newlines

Separate commands with newlines instead of
semicolons

--unset Unset all other environment variables

--chdir Switch to the program’s original working directory

--format=ash
Use ash syntax for setting environment variables

--newlines

Separate commands with newlines instead of
semicolons

--unset Unset all other environment variables

--chdir Switch to the program’s original working directory

--extract=source
Extract coNCePTuaL source code

Chapter 3: Usage 42

--format=text [default]
Output the source code in plain-text format

--indent=number
Indent each line by a given number of spaces

--wrap=number
Wrap the source code into a paragraph with a given
character width

The following represent additional clarification for some of the above:
• If --indent is specified without an argument, the argument defaults to 2.
• If --wrap is specified without an argument, the argument defaults to 72.
• The following are examples of the different arguments to the --columns option:

--columns=1 (default)
coNCePTuaL version: 1.0
coNCePTuaL backend: c_mpi
Average timer overhead [gettimeofday()]: <1 microsecond
Log creation time: Thu Mar 27 19:22:48 2003
Log completion time: Thu Mar 27 19:22:48 2003

--columns=2
coNCePTuaL version: 1.0
coNCePTuaL backend: c_mpi
Average timer overhead [gettimeofday()]: <1 microsecond
Log creation time: Thu Mar 27 19:22:48 2003
Log completion time: Thu Mar 27 19:22:48 2003

--columns=3
coNCePTuaL version : 1.0
coNCePTuaL backend : c_mpi
Average timer overhead [gettimeofday()]: <1 microsecond
Log creation time : Thu Mar 27 19:22:48 2003
Log completion time : Thu Mar 27 19:22:48 2003

• --dumpkeys produces suitable input for the --include option.
• --exclude can be specified repeatedly on the command line.
• --merge takes one of mean (arithmetic mean), hmean (harmonic mean), min (minimum),

max (maximum), median (median), or all (horizontal concatenation of all data) and
applies the function to corresponding data values across all of the input files. --merge
can also accept a comma-separated list of the above functions, one per data column.
This enables a different merge operation to be used for each column. For example,
--merge=min,min,mean will take the minimum value across all files of each element in
the first and second columns and the arithmetic mean across all files of each element in
the third column. If the number of comma-separated values differs from the number of
columns and --force-merge is specified, ‘logextract’ will cycle over the given values
until all columns are accounted for.

• --showfnames prepends to each data table in the input file an extra header line indi-
cating the log file the data was extracted from. This option makes sense only when
data is being extracted and primarily when --merge=all is specified. --showfnames

Chapter 3: Usage 43

takes one of none, all, or first. The default is none, which doesn’t add an extra
header row. all repeats the filename in each column of the extra header row. first
outputs the filename in only the first column, leaving the remaining columns with an
empty string. The following examples show how a sample data table is formatted with
--showfnames set in turn to each of none, all, and first:
• Set to none (the default):

"Size","Value"
1,2
2,4
3,6

• Set to all (filename repeated in each column of the first row):
"mydata.log","mydata.log"
"Size","Value"
1,2
2,4
3,6

• Set to first (filename shown only in the first column of the first row):
"mydata.log",""
"Size","Value"
1,2
2,4
3,6

• If --format=params is used with both --longtable and --tabularx, the generated
table will be formatted for use with the ltxtable LATEX package. See ltxtable’s
documentation for more information.

NOTES

If no filenames are given, ‘logextract’ will read from the standard input device. If
multiple log files are specified, coNCePTuaL will merge the data values and take all other
information from the first file specified. Note, however, that all of the log files must have
been produced by the same coNCePTuaL program and that that program must have been
run in the same environment. In other words, only the data values may change across log
files; everything else must be invariant. See the description of --merge in the Additional
Options section for more information about merging data values from multiple log files.

If the argument provided to any ‘logextract’ option begins with an at sign (“@”), the
value is treated as a filename and is replaced by the file’s contents. To specify an non-
filename argument that begins with an at sign, merely prepend an additional “@”:

--this=that
The option this is given the value “that”.

--this=@that
The option this is set to the contents of the file called ‘that’.

--this=@@that
The option this is given the value “@that”.

Chapter 3: Usage 44

EXAMPLES

For the following examples, we assume that ‘results.log’ is the name of a log file
produced by a coNCePTuaL program.

Extract the source code that produced ‘results.log’:
logextract --extract=source results.log

Do the same, but indent the code by four spaces then re-wrap it into a 60-column
paragraph:

logextract --extract=source --indent=4 --wrap=60 results.log

Here are a variety of ways to express the same thing:
logextract -e source --indent=4 --wrap=60 results.log

logextract -e source --indent=4 results.log --wrap=60

cat results.log | logextract --wrap=60 --indent=4 -e source

Output the source code wrapped to 72 columns, with no indentation, and formatted
within an HTML preformatted-text block:

logextract --extract=source --wrap --before="<PRE>\n" \
after="</PRE>\n" results.log

Extract the data in CSV format and write it to ‘results.csv’:
logextract --extract=data results.log --output=results.csv

Note that --extract=data is the default and therefore optional:
logextract results.log --output=results.csv

‘logextract’ can combine data from multiple log files (using an arithmetic mean by
default):

logextract results-*.log --output=results.csv

Put the data from all of the log files side-by-side and produce a CSV file that Microsoft
Excel can read directly:

logextract results-*.log --output=results.csv --merge=all \
--showfnames=first --excel

Output ‘result.log’’s data in tab-separated-value format:
logextract --format=tsv results.log

Output the data in space-separated-value format:
logextract --colsep=" " results.log

Use ‘gnuplot’ to draw a PostScript graph of the data:
logextract results.log --colsep=" " --noheaders \

--before=@params.gp | gnuplot > results.eps

In the above, the ‘params.gp’ file might contain ‘gnuplot’ commands such as the fol-
lowing:

set terminal postscript eps enhanced color "Times-Roman" 30
set output
set logscale xy
set data style linespoints
set pointsize 3

Chapter 3: Usage 45

plot "-" title "Latency"

(There should be an extra blank line at the end of the file because ‘logextract’ strips
off a trailing newline character whenever it reads a file using “@”.)

Produce a complete HTML file of the data (noting that --format=html produces only
tables, not complete documents):

logextract --format=html
--before=’<html>\n<head>\n<title>Data</title>\n</head>\n<body>\n’ \
--after=’</body>\n</html>\n’ results.log

Output the data as a LATEX tabular, relying on both the (standard) dcolumn and (non-
standard) booktabs packages for more attractive formatting:

logextract --format=latex --dcolumn --booktabs \
--output=results.tex results.log

Output the run-time parameters in the form “key --> value” with all of the arrows
aligned:

logextract results.log --extract=params --columns=3 --colsep=" --> "

Output the run-time parameters as an HTML description list:
logextract results.log --extract=params --before=’<dl>’ \

--rowbegin=’<dt>’ --colsep=’</dt><dd>’ --rowend=’</dd>\n’ \
--after=’</dl>\n’

Restore the exact execution environment that was used to produce ‘results.log’, in-
cluding the current working directory (assuming that ‘bash’ is the current command shell):

eval ‘logextract --extract=env --format=bash \
--unset --chdir results.log‘

Set all of the environment variables that were used to produce ‘results.log’,
overwriting–but not removing–whatever environment variables are currently set (assuming
that ‘tcsh’ is the current command shell):

eval ‘logextract --extract=env --format=tcsh results.log‘

AUTHOR

Scott Pakin, pakin@lanl.gov

mailto:pakin@lanl.gov

Chapter 4: Grammar 46

4 Grammar

The coNCePTuaL language was designed to produce precise specifications of network
correctness and performance tests yet read like an English-language document that contains
a hint of mathematical notation. Unlike more traditional programming languages, coN-
CePTuaL is more descriptive than imperative. There are no classes, functions, arrays,
pointers, or even variable assignments (although expressions can be let-bound to identi-
fiers).1 The language operates primarily on integers, with support for string constants in a
few constructs. A coNCePTuaL program merely describes a communication pattern and
the coNCePTuaL compiler generates code to implement that pattern.

As a domain-specific language, coNCePTuaL contains primitives to send and receive
messages. It is capable of measuring time, computing statistics, and logging results. It
knows that it will be run in a shared-nothing SPMD2 style with explicit message-passing.
As a result of its special-purpose design coNCePTuaL can express communication patterns
in a clearer and terser style than is possible using a general-purpose programming language.

The coNCePTuaL language is case-insensitive. Hello is the same as HELLO or hello.
Furthermore, whitespace is insignificant; one space has the same meaning as multiple spaces.
Comments are designated with a ‘#’ character and extend to the end of the line.

We now describe the coNCePTuaL grammar in a bottom-up manner, i.e., starting
from primitives and working up to complete programs. Note that many of the sections in
this chapter use the following syntax to formally describe language elements:� �
〈nonterminal〉

a placeholder for a list of language primitives and additional placeholders

::= “is defined as”

KEYWORD a primitive with special meaning to the language

[. . .] optional items

(. . .) grouping of multiple items into one

* zero or more occurrences of the preceding item

+ one or more occurrences of the preceding item

| either the item to the left or the item to the right but not both
 	
4.1 Primitives

At the lowest level, coNCePTuaL programs are composed of identifiers, strings, and
integers (and a modicum of punctuation). Identifiers consist of a letter followed by zero
or more alphanumerics or underscores. ‘potato’, ‘x’, and ‘This_is_program_123’ are all
examples of valid identifiers. Identifiers are used for two purposes: variables and keywords.

1 coNCePTuaL is not even Turing-complete. That is, it cannot perform arbitrary computations.
2 Single Program, Multiple Data

Chapter 4: Grammar 47

Variables—referred to in the formal grammar as 〈ident〉s—can be bound but not assigned.
That is, once a variable is given a value it retains that value for the entire scope although
it may be given a different value within a subordinate scope. All variables are of integer
type. There are a number of variables that are predeclared and maintained automatically
by coNCePTuaL. These are listed and described in Section A.2 [Predeclared variables],
page 127. Predeclared variables can be used by coNCePTuaL programs but cannot be
redeclared; an attempt to do so will result in a compile-time error message.

Keywords introduce actions. For example, SEND and RECEIVE are keywords. (A complete
list of coNCePTuaL keywords is presented in Section A.1 [Keywords], page 123.) Most
keywords can appear in multiple forms. For example, OUTPUT and OUTPUTS are synonymous,
as are COMPUTE and COMPUTES, A and AN, and TASK and TASKS. The intention is for programs
to use whichever sounds better in an English-language sentence. Keywords may not be used
as variable names; an attempt to do so will cause the compiler to output a parse error.

Although identifiers are case insensitive—SEND is the same as ‘send’ is the same as
‘sENd’—to increase clarity, this manual presents keywords in uppercase and variables in
lowercase.

Strings consist of double-quoted text. Within a string—and only within a string—
whitespace and case are significant. Use ‘\"’ for a double-quote character, ‘\\’ for a back-
slash, and ‘\n’ for a newline character. For example, the string "October 2004" represents
the text “October 2004” and "I store \"stuff\" in C:\\MyStuff." represents “I store
"stuff" in C:\MyStuff.” Within the double quotes verbatim newline characters and all
subsequent spaces are replaced with a single space, as in the following example:

"This string
originally contained

some newline characters."

⇒ “This string originally contained some newline characters.”
Integers consist of an optional ‘+’ or ‘-’ followed by one or more digits followed by an

optional multiplier. This multiplier is unique to coNCePTuaL and consists of one of the
following four letters:

‘K’ (kilo) multiplies the integer by 1,024

‘M’ (mega) multiplies the integer by 1,048,576

‘G’ (giga) multiplies the integer by 1,073,741,824

‘T’ (tera) multiplies the integer by 1,099,511,627,776

In addition, a multiplier can be ‘E’ (exponent) followed by a positive integer. An ‘E’ multi-
plier multiplies the base integer by 10 raised to the power of the alternate integer.

Some examples of valid integers include ‘2004’, ‘-42’, ‘64K’ (= 65,536), and ‘8E3’
(= 8,000).

4.2 Expressions

Expressions, as in any language, are a combination of primitives and other expressions in
a semantically meaningful juxtaposition. coNCePTuaL provides arithmetic expressions,
which evaluate to a number, and relational expressions, which evaluate to either true or

Chapter 4: Grammar 48

false. In addition, coNCePTuaL provides the notion of an aggregate expression, which
represents a function (e.g., statistical mean) applied to every value taken on by an arithmetic
expression during the run of a program.

4.2.1 Arithmetic expressions

coNCePTuaL supports a variety of arithmetic expressions. The following is the lan-
guage’s order of operations from highest to lowest precedence:

unary ‘+’, ‘-’, NOT, ‘〈function〉(〈expr〉, ...)’, ‘REAL(〈expr〉)’

power ‘**’

multiplicative ‘*’, ‘/’, MOD, ‘<<’, ‘>>’, AND

additive ‘+’, ‘-’, OR, XOR

conditional ‘〈expr〉 IF 〈rel expr〉 OTHERWISE 〈expr〉’
In addition, as in most programming languages, parentheses can be used to group subex-
pressions.

AND, OR, XOR, and NOT are bitwise operators. Hence, for example, ‘3 OR 5’ is equal to ‘7’.

‘<<’ and ‘>>’ are bit-shift operators. That is, ‘a << b’ is the coNCePTuaL equivalent
of the mathematical expression a× 2b and ‘a >> b’ is the coNCePTuaL equivalent of the
mathematical expression a÷ 2b.

MOD is a modulo (i.e., remainder) operator: ‘10 MOD 3’ returns ‘1’. ‘MOD’ is guaranteed
to return a nonnegative remainder. Hence, ‘16 MOD 7’ and ‘16 MOD -7’ both return ‘2’ even
though ‘-5’ is also mathematically valid. Similarly, ‘-16 MOD 7’ and ‘-16 MOD -7’ both
return ‘5’ even though ‘-2’ is also mathematically valid.

The function calls allowed in ‘〈function〉(〈expr〉, ...)’ are listed and described in Sec-
tion 4.2.2 [Built-in functions], page 49. All functions take one or more arithmetic expressions
as an argument. The operator ‘*’ represents multiplication; ‘/’ represents division; and ‘**’
represents exponentiation (i.e., ‘x ** y’ ≡ bxyc). Note that 0y generates a run-time error
for y ≤ 0.

A conditional expression ‘〈expr1〉 IF 〈rel expr〉 OTHERWISE 〈expr2〉’ evaluates to 〈expr1〉
if the relational expression 〈rel expr〉 evaluates to true and 〈expr2〉 if 〈rel expr〉 evaluates
to false.3 Relational expressions are described in Section 4.2.5 [Relational expressions],
page 60. As some examples of conditional expressions, ‘666 IF 2+2=5 OTHERWISE 777’ re-
turns ‘777’ while ‘666 IF 2+2=4 OTHERWISE 777’ returns ‘666’.

All operations proceed left-to-right except power and conditional expressions, which
proceed right-to-left. That is, ‘4-3-2’ means (4 − 3) − 2 but ‘4**3**2’ means 4(32). Sim-
ilarly, ‘2 IF p=0 OTHERWISE 1 IF p=1 OTHERWISE 0’ associates like ‘2 IF p=0 OTHERWISE (1
IF p=1 OTHERWISE 0)’, not like ‘(2 IF p=0 OTHERWISE 1) IF p=1 OTHERWISE 0’.

3 It is therefore analogous to ‘〈rel expr〉 ? 〈expr1〉 : 〈expr2〉’ in the C programming language.

Chapter 4: Grammar 49

Evaluation contexts

coNCePTuaL normally evaluates arithmetic expressions in “integer context”, meaning
that each subexpression is truncated to the nearest integer after being evaluated. Hence,
‘24/5*5’ is ‘20’, not ‘24’, because ‘24/5*5’ = b24÷ 5c × 5 = 4 × 5 = 20. There are a
few situations, however, in which coNCePTuaL evaluates expressions in “floating-point
context”, meaning that no truncation occurs:

• within an OUTPUTS statement (see Section 4.5.2 [Writing to standard output], page 71)

• within a LOGS statement (see Section 4.5.3 [Writing to a log file], page 71)

• within a BACKEND EXECUTES statement (see Section 4.6.6 [Injecting arbitrary code],
page 77)

• within a range in a FOR EACH statement (see Section 4.7.2 [Iterating], page 79) when
coNCePTuaL is unable to find an arithmetic or geometric progression by evaluating
the component 〈expr〉s in integer context

Within any of the preceding statements, the expression ‘24/5*5’ evaluates to 24. Further-
more, the expression ‘24/5’ evaluates to 4.8, which is a number that can’t be entered
directly in a coNCePTuaL program. (The language supports only integral constants, as
mentioned in Section 4.1 [Primitives], page 46.)

The coNCePTuaL language provides a special form called REAL which resembles a
single-argument function. When evaluated in floating-point context, REAL returns its argu-
ment evaluated normally, as if ‘REAL’ were absent. When evaluated in integer context, how-
ever, REAL evalutes its argument in floating-point context and then rounds the result to the
nearest integer. As an example, ‘9/2 + 1/2’ is ‘4’ in integer context because ‘9/2 + 1/2’ =
b9/2c + b1/2c = 4 + 0 = 4. However, ‘REAL(9/2 + 1/2)’ is ‘5’ in integer context because
‘REAL(9/2 + 1/2)’ = b9/2 + 1/2 + 0.5c = b5 + 0.5c = 5.

4.2.2 Built-in functions

In addition to the operators described in Section 4.2.1 [Arithmetic expressions], page 48,
coNCePTuaL contains a number of built-in functions that perform a variety of arithmetic
operations that are often found to be useful in network correctness and performance testing
codes. These include simple functions that map one number to another as well as a set of
topology-specific functions that help implement communication across various topologies,
specifically n-ary trees, meshes, tori, and k-nomial trees. coNCePTuaL currently supports
the following functions:

• ABS

• BITS

• CBRT

• FACTOR10

• LOG10

• MAX

• MIN

• ROOT

Chapter 4: Grammar 50

• SQRT

• CEILING

• FLOOR

• ROUND

• TREE_PARENT

• TREE_CHILD

• KNOMIAL_PARENT

• KNOMIAL_CHILD

• KNOMIAL_CHILDREN

• MESH_NEIGHBOR

• MESH_COORDINATE

• TORUS_NEIGHBOR

• TORUS_COORDINATE

• RANDOM_UNIFORM

• RANDOM_GAUSSIAN

• RANDOM_POISSON

All of the above take as an argument one or more integers (which may be the result of
an arithmetic expression). The following sections describe each function in turn.

Integer functions

ABS returns the absolute value of its argument. For example, ‘ABS(99)’ and ‘ABS(-99)’
are both ‘99’.

BITS returns the minimum number of bits needed to store its argument. For example,
‘BITS(12345)’ is ‘14’ because 214 is 16,384, which is larger than 12,345, while 213 is 8,192,
which is too small. ‘BITS(0)’ is defined to be ‘0’. Essentially, ‘BITS(x)’ represents dlog2 xe,
i.e., the ceiling of the base-2 logarithm of x. Negative numbers are treated as their two’s-
complement equivalent. For example, ‘BITS(-1)’ returns ‘32’ on a 32-bit system and ‘64’
on a 64-bit system.

CBRT is an integer cube root function. It is essentially just syntactic sugar for the more
general ROOT function: ‘CBRT(x)’ ≡ ‘ROOT(3, x)’.

FACTOR10 rounds its argument down (more precisely, towards zero) to the largest single-
digit factor of an integral power of 10. ‘FACTOR10(4975)’ is therefore ‘4000’. Similarly,
‘FACTOR10(-4975)’ is ‘-4000’.

‘LOG10(x)’ is blog xc, i.e., the floor of the base-10 logarithm of x. For instance,
‘LOG10(12345)’ is ‘4’ because 104 is the largest integral power of 10 that does not exceed
12,345.

Chapter 4: Grammar 51

MIN and MAX return, respectively, the minimum and maximum value in a list of numbers.
Unlike the other built-in functions, MIN and MAX accept an arbitrary number of arguments
(but at least one). For example, ‘MIN(8,6,7,5,3,0,9)’ is ‘0’ and ‘MAX(8,6,7,5,3,0,9)’
is ‘9’.

‘ROOT(n, x)’ returns n
√

x, i.e., the nth root of x. More precisely, it returns the largest
integer r such that rn ≤ x. ROOT is not currently defined on negative values of x but this
may change in a future release of coNCePTuaL. As an example of ROOT usage, ‘ROOT(5,
245)’ is ‘3’ because 35 = 243 ≤ 245 but 45 = 1024 > 245. Similarly, ‘ROOT(2, 16)’ = ‘4’;
‘ROOT(3, 27)’ = ‘3’; ‘ROOT(0, 0)’ and ‘ROOT(4, -245)’ each return a run-time error; and,
‘ROOT(-3, 8)’ = ‘0’ (because ‘ROOT(-3, 8)’ = ‘1/ROOT(3, 8)’ = ‘1/2’ = ‘0’).

SQRT is an integer square root function. It is essentially just syntactic sugar for the more
general ROOT function: ‘SQRT(x)’ ≡ ‘ROOT(2, x)’.

Floating-point functions

As stated in Section 4.2.1 [Arithmetic expressions], page 48, there are certain constructs
in which expressions are evaluated in floating-point context instead of integer context. In
such constructs, all of coNCePTuaL’s built-in functions return floating-point values. Fur-
thermore, the CBRT, LOG10, ROOT, and SQRT functions compute floating-point results, not
integer results which are coerced into floating-point format.

The following functions are not meaningful in integer context but are in floating-point
context:
• CEILING

• FLOOR

• ROUND

CEILING returns the smallest integer not less than its argument. For example,
‘CEILING(-7777/10)’ is ‘-777’. (-778 is less than -777.7 while -777 is not less than -777.7.)

FLOOR returns the largest integer not greater than its argument. For example,
‘FLOOR(-7777/10)’ is ‘-778’. (-778 is not greater than -777.7 while -777 is greater than
-777.7.)

ROUND rounds its argument to the nearest integer. For example, ‘ROUND(-7777/10)’ is
‘-778’.

It is not an error to use CEILING, FLOOR, and ROUND in an integer context; each function
merely return its argument unmodified.

n-ary tree functions

n-ary trees are used quite frequently in communication patterns because they require
only logarithmic time (in the number of tasks) for a message to propagate from the root to a
leaf. coNCePTuaL supports n-ary trees in the form of the TREE_PARENT and TREE_CHILD
functions.

FunctionTREE PARENT (task ID [, fan-out])
TREE_PARENT takes a task number and an optional tree fan-out (n) and returns the
task’s parent in an n-ary tree. n defaults to ‘2’, i.e., a binary tree. Taking the
TREE_PARENT of any task less than 1 returns the value ‘-1’.

Chapter 4: Grammar 52

FunctionTREE CHILD (task ID, child [, fan-out])
TREE_CHILD takes a task number, a child number (0 ≤ i < N), and an optional tree
fan-out (n), which again defaults to ‘2’. It returns the task number corresponding to
the given task’s childth child.

The following illustrations show how tasks are numbered in, respectively, a 2-ary and a
3-ary tree:

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

0

1

4 5 6

2

7 8 9

3

10 11 12

As shown by the 2-ary tree, task 1’s children are task 3 and task 4. Therefore,
‘TREE_PARENT(3)’ and ‘TREE_PARENT(4)’ are both ‘1’; ‘TREE_CHILD(1, 0)’ is ‘3’; and,
‘TREE_CHILD(1, 1)’ is ‘4’. In a 3-ary tree, each task has three children. Hence, the
following expressions hold:

• ‘TREE_PARENT(7, 3)’ ⇒ ‘2’
• ‘TREE_PARENT(8, 3)’ ⇒ ‘2’
• ‘TREE_PARENT(9, 3)’ ⇒ ‘2’
• ‘TREE_CHILD(2, 0, 3)’ ⇒ ‘7’
• ‘TREE_CHILD(2, 1, 3)’ ⇒ ‘8’
• ‘TREE_CHILD(2, 2, 3)’ ⇒ ‘9’

k-nomial tree functions

k-nomial trees are an efficient way to implement collective-communication operations in
software. Unlike in an n-ary tree, the number of children in a k-nomial tree decreases with
increasing task depth (i.e., no task has more children than the root). The advantage is
that the tasks that start communicating earlier perform more work, which reduces the total
latency of the collective operation. In contrast, in an n-ary tree, the tasks that start com-
municating earlier finish earlier, at the expense of increased total latency. coNCePTuaL
supports k-nomial trees via the KNOMIAL_PARENT, KNOMIAL_CHILDREN, and KNOMIAL_CHILD
functions, as described below.

Chapter 4: Grammar 53

FunctionKNOMIAL PARENT (task ID [, fan out [, num tasks]])
KNOMIAL_PARENT takes a task number, the tree fan-out factor (the “k” in “k-ary”),
and the number of tasks in the tree. It returns the task ID of the given task’s parent.
fan out defaults to ‘2’ and the number of tasks defaults to num_tasks (see Section A.2
[Predeclared variables], page 127).

FunctionKNOMIAL CHILDREN (task ID [, fan out [, num tasks]])
KNOMIAL_CHILDREN takes the same arguments as KNOMIAL_PARENT but returns the
number of immediate descendents the given task has.

FunctionKNOMIAL CHILD (task ID, child [, fan out [, num tasks]])
KNOMIAL_CHILD takes a task number, a child number (0 ≤ i <
‘KNOMIAL_CHILDREN(...)’), the tree fan-out factor, and the number of
tasks in the tree. It returns the task number corresponding to the given task’s ith
child. As in KNOMIAL_PARENT and KNOMIAL_CHILDREN, fan out defaults to ‘2’ and
the number of tasks defaults to num_tasks (see Section A.2 [Predeclared variables],
page 127).

The following figure shows how coNCePTuaL numbers tasks in a k-nomial tree with
k = 2 (a.k.a. a 2-nomial or binomial tree).

0

1

3

7 5

2

6 4

The figure is structured with time flowing downwards. That is, for a multicast operation
expressed over a 2-nomial tree, task 0 sends a message to task 1 in the first time step.
Then, task 0 sends to task 2 while task 1 sends to task 3. In the final step, task 0 sends
to task 4, task 1 sends to task 5, task 2 sends to task 6, and task 3 sends to task 7—all
concurrently. The following expressions also hold, assuming there are a total of eight tasks
in the computation:
• ‘KNOMIAL_PARENT(0)’ ⇒ ‘-1’
• ‘KNOMIAL_PARENT(1)’ ⇒ ‘0’
• ‘KNOMIAL_CHILDREN(1)’ ⇒ ‘2’
• ‘KNOMIAL_CHILD(1, 0)’ ⇒ ‘3’
• ‘KNOMIAL_CHILD(1, 1)’ ⇒ ‘5’
• ‘KNOMIAL_CHILDREN(7)’ ⇒ ‘0’
• ‘KNOMIAL_CHILD(7, 0)’ ⇒ ‘-1’

k-nomial trees for k > 2 are much less common in practice than 2-nomial trees. How-
ever, they may perform well when a task has sufficient bandwidth to support multiple,

Chapter 4: Grammar 54

simultaneous, outgoing messages. For example, a trinomial tree (i.e., a k-nomial tree with
k = 3) should exhibit good performance if there is enough bandwidth to send two messages
simultaneously. The following illustration shows how coNCePTuaL constructs a 27-task
trinomial tree:

0

1

4

13 22

7

16 25 10 19

2

5

14 23

8

17 26 11 20

3

12 21

6

15 24 9 18

As before, time flows downward (assuming a multicast operation) and tasks are expected to
communicate with their children in order. The following are some coNCePTuaL k-nomial
tree expressions and their evaluations, assuming num_tasks is ‘27’:
• ‘KNOMIAL_PARENT(0, 3)’ ⇒ ‘-1’
• ‘KNOMIAL_PARENT(2, 3)’ ⇒ ‘0’
• ‘KNOMIAL_CHILDREN(2, 3)’ ⇒ ‘4’
• ‘KNOMIAL_CHILD(2, 0, 3)’ ⇒ ‘5’
• ‘KNOMIAL_CHILD(2, 1, 3)’ ⇒ ‘8’
• ‘KNOMIAL_CHILD(2, 2, 3)’ ⇒ ‘11’
• ‘KNOMIAL_CHILD(2, 3, 3)’ ⇒ ‘20’
• ‘KNOMIAL_CHILD(2, 4, 3)’ ⇒ ‘-1’
• ‘KNOMIAL_CHILDREN(8, 3)’ ⇒ ‘2’
• ‘KNOMIAL_CHILDREN(8, 3, 26)’ ⇒ ‘1’
• ‘KNOMIAL_CHILDREN(8, 3, 10)’ ⇒ ‘0’

Mesh functions

coNCePTuaL provides two functions, MESH_NEIGHBOR and MESH_COORDINATE, that
help treat (linear) task IDs as positions on a multidimensional mesh. Each of these functions
takes a variable number of arguments, determined by the dimensionality of the mesh (1-D,
2-D, or 3-D).

FunctionMESH NEIGHBOR (task ID, width, x offset [, height, y offset
[, depth, z offset]])

MESH_NEIGHBOR returns a task’s neighbor on a 1-D, 2-D, or 3-D mesh. It always takes
a task number, the mesh’s width, and the desired x offset from the given task. For
a 2-D or 3-D mesh, the next two arguments are the mesh’s height and the desired
y offset from the given task. For a 3-D mesh only, the next two arguments are the
mesh’s depth and the desired z offset from the given task. Offsets that move off the
mesh cause MESH_NEIGHBOR to return the value ‘-1’.

Chapter 4: Grammar 55

FunctionMESH COORDINATE (task ID, coordinate, width [, height
[, depth]])

MESH_COORDINATE returns a task’s x, y, or z coordinate on a 1-D, 2-D, or 3-D mesh.
The first argument to MESH_COORDINATE is a task number. The second argument
should be ‘0’ to calculate an x coordinate, ‘1’ to calculate a y coordinate, or ‘2’ to
calculate a z coordinate. The remaining arguments are the mesh’s width, height, and
depth, respectively. The height can be omitted for a 1-D mesh and the depth can be
omitted for a 2-D mesh. (Both default to ‘1’.)

MESH_NEIGHBOR and MESH_COORDINATE number tasks following the right-hand rule: left-
to-right, then top-to-bottom, and finally back-to-front, as shown in the following illustra-
tions of a 4-element (1-D) mesh, a 4× 3 (2-D) mesh, and a 4× 3× 2 (3-D) mesh. Examples
of MESH_NEIGHBOR and MESH_COORDINATE for 1-D, 2-D, and 3-D meshes follow the corre-
sponding illustration.

0 1 2 3

• ‘MESH_NEIGHBOR(0, 4, -1)’ ⇒ ‘-1’

• ‘MESH_NEIGHBOR(0, 4, +1)’ ⇒ ‘1’

• ‘MESH_NEIGHBOR(1, 4, -1)’ ⇒ ‘0’

• ‘MESH_NEIGHBOR(1, 4, +1)’ ⇒ ‘2’

• ‘MESH_NEIGHBOR(2, 4, -1)’ ⇒ ‘1’

• ‘MESH_NEIGHBOR(2, 4, +1)’ ⇒ ‘3’

• ‘MESH_NEIGHBOR(3, 4, -1)’ ⇒ ‘2’

• ‘MESH_NEIGHBOR(3, 4, +1)’ ⇒ ‘-1’

• ‘MESH_COORDINATE(-1, 0, 4)’ ⇒ ‘-1’

• ‘MESH_COORDINATE(0, 0, 4)’ ⇒ ‘0’

• ‘MESH_COORDINATE(1, 0, 4)’ ⇒ ‘1’

• ‘MESH_COORDINATE(2, 0, 4)’ ⇒ ‘2’

• ‘MESH_COORDINATE(3, 0, 4)’ ⇒ ‘3’

• ‘MESH_COORDINATE(4, 0, 4)’ ⇒ ‘-1’

• ‘MESH_COORDINATE(2, 1, 4)’ ⇒ ‘0’

• ‘MESH_COORDINATE(2, 2, 4)’ ⇒ ‘0’

Chapter 4: Grammar 56

0 1 2 3

4 5 6 7

8 9 10 11

• ‘MESH_NEIGHBOR(5, 4, -1, 3, -1)’ ⇒ ‘0’
• ‘MESH_NEIGHBOR(5, 4, 0, 3, -1)’ ⇒ ‘1’
• ‘MESH_NEIGHBOR(5, 4, +1, 3, -1)’ ⇒ ‘2’
• ‘MESH_NEIGHBOR(5, 4, -1, 3, 0)’ ⇒ ‘4’
• ‘MESH_NEIGHBOR(5, 4, 0, 3, 0)’ ⇒ ‘5’
• ‘MESH_NEIGHBOR(5, 4, +1, 3, 0)’ ⇒ ‘6’
• ‘MESH_NEIGHBOR(5, 4, -1, 3, +1)’ ⇒ ‘8’
• ‘MESH_NEIGHBOR(5, 4, 0, 3, +1)’ ⇒ ‘9’
• ‘MESH_NEIGHBOR(5, 4, +1, 3, +1)’ ⇒ ‘10’

• ‘MESH_COORDINATE(1, 0, 4, 3)’ ⇒ ‘1’
• ‘MESH_COORDINATE(6, 0, 4, 3)’ ⇒ ‘2’
• ‘MESH_COORDINATE(6, 1, 4, 3)’ ⇒ ‘1’
• ‘MESH_COORDINATE(6, 2, 4, 3)’ ⇒ ‘0’
• ‘MESH_COORDINATE(8, 0, 4, 3)’ ⇒ ‘0’
• ‘MESH_COORDINATE(8, 1, 4, 3)’ ⇒ ‘2’
• ‘MESH_COORDINATE(12, 0, 4, 3)’ ⇒ ‘-1’

0

@

@

@

@

@

@

@

@

1

@

@

@

@

@

@

@

@

2

B

B

B

B

B

B

B

B

3

B

B

B

B

B

B

B

B

12 13 14 15

4

@

@

@

@

@

@

@

@

5

@

@

@

@

@

@

@

@

6

B

B

B

B

B

B

B

B

7

B

B

B

B

B

B

B

B

16 17 18 19

8

@

@

@

@

@

@

@

@

9

@

@

@

@

@

@

@

@

10

B

B

B

B

B

B

B

B

11

B

B

B

B

B

B

B

B

20 21 22 23

Chapter 4: Grammar 57

• ‘MESH_NEIGHBOR(0, 4, 0, 3, 0, 2, +1)’ ⇒ ‘12’
• ‘MESH_NEIGHBOR(0, 4, 0, 3, +1, 2, 0)’ ⇒ ‘4’
• ‘MESH_NEIGHBOR(0, 4, +1, 3, 0, 2, 0)’ ⇒ ‘1’
• ‘MESH_NEIGHBOR(0, 4, +1, 3, +1, 2, +1)’ ⇒ ‘17’
• ‘MESH_NEIGHBOR(17, 4, +2, 3, -1, 2, -1)’ ⇒ ‘3’
• ‘MESH_NEIGHBOR(23, 4, +1, 3, +1, 2, +1)’ ⇒ ‘-1’

• ‘MESH_COORDINATE(-5, 0, 4, 3, 2)’ ⇒ ‘-1’
• ‘MESH_COORDINATE(1, 0, 4, 3, 2)’ ⇒ ‘1’
• ‘MESH_COORDINATE(6, 0, 4, 3, 2)’ ⇒ ‘2’
• ‘MESH_COORDINATE(6, 1, 4, 3, 2)’ ⇒ ‘1’
• ‘MESH_COORDINATE(6, 2, 4, 3, 2)’ ⇒ ‘0’
• ‘MESH_COORDINATE(18, 0, 4, 3, 2)’ ⇒ ‘2’
• ‘MESH_COORDINATE(18, 1, 4, 3, 2)’ ⇒ ‘1’
• ‘MESH_COORDINATE(18, 2, 4, 3, 2)’ ⇒ ‘1’
• ‘MESH_COORDINATE(18, 3, 4, 3, 2)’ ⇒ error Invalid coordinate

Torus functions

A torus is a mesh with wraparound edges. coNCePTuaL provides analogues to MESH_
NEIGHBOR and MESH_COORDINATE called TORUS_NEIGHBOR and TORUS_COORDINATE which en-
able (linear) task IDs to be treated as positions on a 1-D, 2-D, or 3-D torus.

FunctionTORUS NEIGHBOR (task ID, width, x offset [, height, y offset
[, depth, z offset]])

TORUS_NEIGHBOR takes the same arguments as MESH_NEIGHBOR but calculates neigh-
bors on a torus instead of a mesh. See the description of MESH_NEIGHBOR for expla-
nations of the arguments. While task offsets that go out-of-bounds on a mesh return
‘-1’, such offsets merely wrap around a torus.

FunctionTORUS COORDINATE (task ID, coordinate, width [, height
[, depth]])

TORUS_COORDINATE returns a task’s x, y, or z coordinate on a 1-D, 2-D, or 3-D torus.
It performs exactly the same function as MESH_COORDINATE and is aliased in the
language merely for symmetry. See the description of TORUS_NEIGHBOR for details.

• ‘TORUS_NEIGHBOR(0, 4, -1)’ ⇒ ‘3’
• ‘TORUS_NEIGHBOR(0, 4, +1)’ ⇒ ‘1’
• ‘TORUS_NEIGHBOR(1, 4, -1)’ ⇒ ‘0’
• ‘TORUS_NEIGHBOR(1, 4, +1)’ ⇒ ‘2’
• ‘TORUS_NEIGHBOR(2, 4, -1)’ ⇒ ‘1’
• ‘TORUS_NEIGHBOR(2, 4, +1)’ ⇒ ‘3’
• ‘TORUS_NEIGHBOR(3, 4, -1)’ ⇒ ‘2’

Chapter 4: Grammar 58

• ‘TORUS_NEIGHBOR(3, 4, +1)’ ⇒ ‘0’

• ‘TORUS_COORDINATE(-1, 0, 4)’ ⇒ ‘-1’
• ‘TORUS_COORDINATE(0, 0, 4)’ ⇒ ‘0’
• ‘TORUS_COORDINATE(1, 0, 4)’ ⇒ ‘1’
• ‘TORUS_COORDINATE(2, 0, 4)’ ⇒ ‘2’
• ‘TORUS_COORDINATE(3, 0, 4)’ ⇒ ‘3’
• ‘TORUS_COORDINATE(4, 0, 4)’ ⇒ ‘-1’
• ‘TORUS_COORDINATE(2, 1, 4)’ ⇒ ‘0’
• ‘TORUS_COORDINATE(2, 2, 4)’ ⇒ ‘0’

• ‘TORUS_NEIGHBOR(0, 4, -1, 3, -1)’ ⇒ ‘11’
• ‘TORUS_NEIGHBOR(0, 4, 0, 3, -1)’ ⇒ ‘8’
• ‘TORUS_NEIGHBOR(0, 4, +1, 3, -1)’ ⇒ ‘9’
• ‘TORUS_NEIGHBOR(0, 4, -1, 3, 0)’ ⇒ ‘3’
• ‘TORUS_NEIGHBOR(0, 4, 0, 3, 0)’ ⇒ ‘0’
• ‘TORUS_NEIGHBOR(0, 4, +1, 3, 0)’ ⇒ ‘1’
• ‘TORUS_NEIGHBOR(0, 4, -1, 3, +1)’ ⇒ ‘7’
• ‘TORUS_NEIGHBOR(0, 4, 0, 3, +1)’ ⇒ ‘4’
• ‘TORUS_NEIGHBOR(0, 4, +1, 3, +1)’ ⇒ ‘5’

• ‘TORUS_NEIGHBOR(23, 4, +1, 3, +1, 2, +1)’ ⇒ ‘0’
• ‘TORUS_NEIGHBOR(23, 4, +2, 3, +2, 2, +2)’ ⇒ ‘17’
• ‘TORUS_NEIGHBOR(23, 4, +3, 3, +3, 2, +3)’ ⇒ ‘10’

• ‘TORUS_COORDINATE(1, 0, 4, 3)’ ⇒ ‘1’
• ‘TORUS_COORDINATE(6, 0, 4, 3)’ ⇒ ‘2’
• ‘TORUS_COORDINATE(6, 1, 4, 3)’ ⇒ ‘1’
• ‘TORUS_COORDINATE(6, 2, 4, 3)’ ⇒ ‘0’
• ‘TORUS_COORDINATE(8, 0, 4, 3)’ ⇒ ‘0’
• ‘TORUS_COORDINATE(8, 1, 4, 3)’ ⇒ ‘2’
• ‘TORUS_COORDINATE(12, 0, 4, 3)’ ⇒ ‘-1’

• ‘TORUS_COORDINATE(-5, 0, 4, 3, 2)’ ⇒ ‘-1’
• ‘TORUS_COORDINATE(1, 0, 4, 3, 2)’ ⇒ ‘1’
• ‘TORUS_COORDINATE(6, 0, 4, 3, 2)’ ⇒ ‘2’
• ‘TORUS_COORDINATE(6, 1, 4, 3, 2)’ ⇒ ‘1’
• ‘TORUS_COORDINATE(6, 2, 4, 3, 2)’ ⇒ ‘0’
• ‘TORUS_COORDINATE(18, 0, 4, 3, 2)’ ⇒ ‘2’
• ‘TORUS_COORDINATE(18, 1, 4, 3, 2)’ ⇒ ‘1’
• ‘TORUS_COORDINATE(18, 2, 4, 3, 2)’ ⇒ ‘1’
• ‘TORUS_COORDINATE(18, 3, 4, 3, 2)’ ⇒ error Invalid coordinate

Chapter 4: Grammar 59

Random-number functions

coNCePTuaL programs can utilize randomness in one of two ways. The functions
described below are unsynchronized across tasks. That is, they can—and usually do—
return a different value to each task on each invocation. One consequence is that these
functions are not permitted within a task expression (see Section 4.3 [Task descriptions],
page 61) because randomness would cause the tasks to disagree about who the sources
and targets of an operation are. In contrast, the A RANDOM TASK construct described in
Section 4.7.3 [Binding variables], page 83 returns a value guaranteed to be synchronized
across tasks and thereby enables random-task selection.

FunctionRANDOM UNIFORM (lower bound, upper bound)
Return a number selected at random from a uniform distribution over the range
[lower bound, upper bound).

FunctionRANDOM GAUSSIAN (mean, stddev)
Return a number selected at random from a Gaussian distribution with mean mean
and standard deviation stddev.

FunctionRANDOM POISSON (mean)
Return an integer selected at random from a Poisson distribution with mean mean
and standard deviation

√
mean.

4.2.3 Aggregate expressions

Aggregate expressions (〈aggr expr〉s) are currently used exclusively by the LOGS state-
ment. They represent an expression with a given function applied to the aggregate of all
(dynamic) instances of that expression. 〈aggr expr〉s take one of four forms:
1. EACH 〈expr〉

(Note: EACH can be omitted.)
2. THE 〈expr〉
3. THE 〈aggr func〉 OF THE 〈expr〉

(Note: OF THE can be shortened to just OF or omitted altogether.)
4. A HISTOGRAM OF THE 〈expr〉

(Note: The THE can be omitted.)

(In the above, 〈expr〉 refers to an arithmetic expression defined in Section 4.2.1 [Arithmetic
expressions], page 48 and 〈aggr func〉 refers to one of the functions defined in Section 4.2.4
[Aggregate functions], page 60.)

The first form does not summarize 〈expr〉; every individual instance of 〈expr〉 is utilized.
The second form asserts that 〈expr〉 is a constant (i.e., all values are identical) and utilizes
that constant.4 The third form applies 〈aggr func〉 to the set of all values of 〈expr〉 and
utilizes the result of that function. The fourth form produces a histogram of all values of
〈expr〉, i.e., a list of {unique value, tally} pairs, sorted by unique value.

4 The program aborts with a run-time error if 〈expr〉 is not a constant.

Chapter 4: Grammar 60

4.2.4 Aggregate functions

The following functions, referred to collectively as 〈aggr func〉s, may be used in an
aggregate expression (see Section 4.2.3 [Aggregate expressions], page 59).

• ARITHMETIC MEAN

• HARMONIC MEAN

• GEOMETRIC MEAN

• MEDIAN

• STANDARD DEVIATION

• VARIANCE

• SUM

• MINIMUM

• MAXIMUM

• FINAL

ARITHMETIC MEAN can be abbreviated to simply MEAN. MEDIAN is the value such that
there are as many larger as smaller values. If there are an even number of values, MEDIAN
is the arithmetic mean of the two medians. FINAL returns only the final value measured.
The interpretation of the remaining functions should be unambiguous.

4.2.5 Relational expressions

Relational expressions (〈rel expr〉s) compare two arithmetic expressions (see
Section 4.2.1 [Arithmetic expressions], page 48) or test an arithmetic expression for a
property. A relational expression can be either true or false.

coNCePTuaL supports a variety of relational expressions. The following is the lan-
guage’s order of operations from highest to lowest precedence:

unary/
binary/
ternary

IS EVEN, IS ODD
‘=’, ‘<’, ‘>’, ‘<=’, ‘>=’, ‘<>’, DIVIDES
IS IN

conjunctive ‘/\’

disjunctive ‘\/’

In addition, as in most programming languages, parentheses can be used to group subex-
pressions.

The unary relation IS EVEN is true if a given arithmetic expression represents an even
number and the unary relation IS ODD is true if a given arithmetic expression represents
an odd number. For example, ‘456 IS EVEN’ is true and ‘64 MOD 6 IS ODD’ is false.

The coNCePTuaL operators ‘=’, ‘<’, ‘>’, ‘<=’, ‘>=’, and ‘<>’ represent, respectively,
the mathematical relations =, <, >, ≤, ≥, and 6=. These are all binary relations that
operate on arithmetic expressions (see Section 4.2.1 [Arithmetic expressions], page 48). For
example, ‘2+2 = 4’ is true and ‘2**3 > 2**4’ is false. The DIVIDES relation is true
if the first expression evenly divides the second, i.e., that e2 ≡ 0 (mod e1). Hence, ‘2

Chapter 4: Grammar 61

DIVIDES 1234’ (equivalent to ‘1234 MOD 2 = 0’) is true while ‘2 DIVIDES 4321’ (equivalent
to ‘4321 MOD 2 = 0’) is false.

The ternary relation IS IN has the form ‘〈expr〉 IS IN [〈expr〉, 〈expr〉]’. The relational
expression ‘x IS IN [a, b]’ is true if x lies within the closed interval [a, b] and false
otherwise. The interval bounds a and b can be specified in any order. Hence, ‘x IS IN
[a, b]’ can be more precisely described as “(a ≤ x ≤ b) ∨ (b ≤ x ≤ a)”. To provide a few
examples, ‘4 IS IN [3,5]’ and ‘4 IS IN [5,3]’ are both true; ‘5 IS IN [3,5]’ is true;
however, ‘6 IS IN [3,5]’ is false.

Conjunction (∧) and disjunction (∨) combine multiple relational expressions.
〈rel expr〉 ‘/\’ 〈rel expr〉 is true if and only if both 〈rel expr〉s are true, and
〈rel expr〉 ‘\/’ 〈rel expr〉 is true if and only if either 〈rel expr〉 is true. For example, ‘456
IS EVEN \/ 2**3 > 2**4’ is true and ‘456 IS EVEN /\ 2**3 > 2**4’ is false. Conjunction
and disjunction are both short-circuiting operations. Evaluation proceeds left-to-right.
Expressions such as ‘x<>0 /\ 1/x=1’ will therefore not result in a divide-by-zero error.

coNCePTuaL does not currently have a logical negation operator.

4.3 Task descriptions

Task descriptions are a powerful way of tersely describing the sources and targets of
coNCePTuaL operations. Task IDs range from 0 to ‘num_tasks-1’ (see Section A.2 [Pre-
declared variables], page 127). Operations involving out-of-bound task IDs are silently
ignored.

As a side effect, a task description can declare a variable that can be used in subsequent
expressions. (See Section 4.2 [Expressions], page 47.) There are two types of task descrip-
tions: one for “source” tasks and one for “target” tasks. The two are syntactically similar
but semantically different. Specifically, the scope of a variable declared in a 〈target tasks〉
specification is more limited than one declared in a 〈source task〉 specification.

Before introducing 〈source task〉 and 〈target tasks〉 specifications we first introduce the
notion of a 〈restricted ident〉, which is a variable declaration that can be used to define a
set of tasks. We then present coNCePTuaL’s complete set of mechanisms for describing
sets of source and target tasks.

4.3.1 Restricted identifiers

A restricted identifier declares a variable, restricting it to the set of tasks that sat-
isfy a given relational expression (see Section 4.2.5 [Relational expressions], page 60).
The syntax is ‘〈ident〉 SUCH THAT 〈rel expr〉’ and represents the mathematical notion of
“∀〈ident〉|(〈rel expr〉 ∧ (0 ≤ 〈ident〉 < 〈#tasks〉))”. That is, “for all 〈ident〉 such that
〈rel expr〉 is true and 〈ident〉 is between zero and the number of tasks. . . ”.

As an example, ‘evno SUCH THAT evno IS EVEN’ describes all even-numbered tasks. On
each such task, the variable ‘evno’ takes on that task’s ID. Similarly, ‘thr SUCH THAT 3
DIVIDES thr-1’ describes tasks 1, 4, 7, 10, 13. On each of those tasks, ‘thr’ will be
bound to the task ID. On all other tasks, ‘thr’ will be undefined. When order matters (as
in the cases described in Section 4.4.2 [Sending], page 67 and Section 4.6.5 [Reordering task
IDs], page 76), 〈ident〉 takes on task IDs in increasing order.

Chapter 4: Grammar 62

Note that an 〈ident〉 can be used anywhere that a 〈restricted ident〉 is expected. In other
words, the restricting 〈rel expr〉 is optional and defaults to a true expression.

4.3.2 Source tasks

A 〈source task〉 specification takes one of four forms:
1. ALL TASKS

2. ALL TASKS 〈ident〉
3. TASK 〈expr〉
4. TASKS 〈restricted ident〉

ALL TASKS specifies that each task will perform a given operation. If followed by a
variable name (〈ident〉), each task will individually bind 〈ident〉 to its task ID—a number
from zero to one less than the total number of tasks. That is, ‘ALL TASKS me’ will bind ‘me’
to ‘0’ on task 0, ‘1’ on task 1, and so forth.

‘TASK 〈expr〉’ specifies that only the task described by arithmetic expression 〈expr〉 will
perform the given operation. For example, ‘TASK 2*3+1’ says that only task 7 will act; the
other tasks will do nothing.

‘TASKS 〈restricted ident〉’ describes a set of tasks that will perform a given operation.
For instance, ‘TASKS x SUCH THAT x>0 /\ x<num_tasks-1’—read as “tasks x such that x is
greater than zero and x is less than num tasks minus one”—expresses that a given operation
should be performed on all tasks except the first and last in the computation. On each task
that satisfies the relational expression, ‘x’ will be bound to the task ID as in ALL TASKS
above. Hence, ‘x’ will be undefined on task 0, ‘1’ on task 1, ‘2’ on task 2, and so forth up
to task ‘num_tasks-1’, on which ‘x’ will again be undefined.

As per the definitions in Section 4.1 [Primitives], page 46 and Section 4.3.1 [Restricted
identifiers], page 61, respectively, 〈ident〉s and 〈restricted ident〉s do not accept parentheses.
Hence, ‘TASKS (bad SUCH THAT bad IS EVEN)’ and ‘ALL TASKS (no_good)’ result in parse
errors while ‘TASKS fine SUCH THAT fine IS EVEN’ and ‘ALL TASKS dandy’ are acceptable
constructs. As an analogy, ‘x = 3’ is valid in many general-purpose programming languages
while ‘(x) = 3’ is not.

Variables declared in a ‘source_task’ specification are limited in scope to the surround-
ing statement.

4.3.3 Target tasks

A 〈target tasks〉 specification takes one of three forms:
1. ALL OTHER TASKS

2. TASK 〈expr〉
3. TASKS 〈restricted ident〉

ALL OTHER TASKS is just like ALL TASKS in a 〈source task〉 specification (see Section 4.3.2
[Source tasks], page 62) but applies to all tasks except the source task. Also, unlike ALL
TASKS, ALL OTHER TASKS does not accept an 〈ident〉 term.

‘TASK 〈expr〉’ specifies that only the task described by arithmetic expression 〈expr〉 is
the target of the given operation. 〈expr〉 can use a variable declared as a 〈source task〉.

Chapter 4: Grammar 63

For example, if 〈source task〉 is ‘ALL TASKS x’, then a 〈target tasks〉 of ‘TASK (x+1) MOD
num_tasks’ refers to each task’s right neighbor (with wraparound from num_tasks to ‘0’).

‘TASKS 〈restricted ident〉’ describes a set of tasks that will perform a given operation.
As with its ‘source_task’ counterpart, a 〈restricted ident〉 declares a variable. However,
in a 〈target tasks〉 specification the variable’s scope is limited to the relational expression
within the 〈restricted ident〉. As an example, ‘TASKS dst SUCH THAT dst>src’ refers to all
tasks ‘dst’ with a greater ID than a (previously declared) task ‘src’.

4.4 Communication statements

Communication statements are the core of any coNCePTuaL program. The coNCeP-
TuaL language makes it easy to express a variety of communication features:
• synchronous or asynchronous communication
• unaligned, aligned (to arbitrary byte boundaries), or misaligned (from a page boundary)

message buffers
• ignored, touched, or verified message contents
• unique or recycled message buffers
• point-to-point or collective operations

Communication statements are performed by an arbitrary 〈source task〉 (see
Section 4.3.2 [Source tasks], page 62) and may involve arbitrary 〈target tasks〉 (see
Section 4.3.3 [Target tasks], page 62). After explaining how to describe a message to
coNCePTuaL (see Section 4.4.1 [Message specifications], page 63) this section presents
each communication statement in turn and explains its purpose, syntax, and semantics.

4.4.1 Message specifications

A message specification describes a set of messages. The following is a formal definition:
〈message spec〉 ::= 〈item count〉

[NONUNIQUE | UNIQUE]
〈item size〉
[UNALIGNED |
〈message alignment〉 ALIGNED |
〈message alignment〉 MISALIGNED]
MESSAGES
[WITH VERIFICATION | WITH DATA TOUCHING |
WITHOUT VERIFICATION | WITHOUT DATA TOUCHING]

[FROM BUFFER 〈expr〉 |
FROM THE DEFAULT BUFFER]

Within a RECEIVE statement (see Section 4.4.3 [Receiving], page 68), a 〈message spec〉’s
FROM keyword must be replaced with INTO.

A SEND statement’s WHO RECEIVES IT clause (see Section 4.4.2 [Sending], page 67) utilizes
a slightly different message specification, which is referred to here as a 〈recv message spec〉:
〈recv message spec〉 ::= [SYNCHRONOUSLY | ASYNCHRONOUSLY]

[AS [A|AN]

Chapter 4: Grammar 64

[NONUNIQUE | UNIQUE]
[UNALIGNED |
〈message alignment〉 ALIGNED |
〈message alignment〉 MISALIGNED]
MESSAGES]

[WITH VERIFICATION | WITH DATA TOUCHING |
WITHOUT VERIFICATION | WITHOUT DATA TOUCHING]

[FROM BUFFER 〈expr〉 |
FROM THE DEFAULT BUFFER]

We now describe in turn each component of a 〈message spec〉 and 〈recv message spec〉.

Item count

The 〈item count〉 says how many messages the 〈message spec〉 represents. It can be an
〈expr〉 or one or A or AN, indicating ‘1’.

Unique messages

Normally, the coNCePTuaL backends recycle message memory to reduce the program’s
memory requirements and improve performance. By adding the keyword UNIQUE, every
message buffer will reside in a unique memory region. NONUNIQUE explicitly specifies the
default, buffer-recycling behavior.

Item size

The message size is represented by the 〈item size〉 nonterminal. It can be expressed in
one of two ways:
〈item size〉 ::= 〈expr〉 〈data multiplier〉

| 〈data type〉 SIZED
A 〈data multiplier〉 is a scaling factor that converts a unitless number into a number

of bytes. The following are the valid possibilities for 〈data multiplier〉 and the number of
bytes which which they multiply 〈expr〉:

BIT 1/8 bytes, rounded up to the nearest integral number of bytes

BYTE 1 byte

HALFWORD 2 bytes

WORD 4 bytes

INTEGER the number of bytes in the backend’s fundamental integer type

DOUBLEWORD
8 bytes

QUADWORD 16 bytes

PAGE the number of bytes in an operating-system page

KILOBYTE 1,024 bytes

MEGABYTE 1,048,576 bytes

Chapter 4: Grammar 65

GIGABYTE 1,073,741,824 bytes

A 〈data type〉 is an “atomic” unit of data. It can be any of the following:

BYTE 1 byte

HALFWORD 2 bytes

WORD 4 bytes

INTEGER the number of bytes in the backend’s fundamental integer type

DOUBLEWORD
8 bytes

QUADWORD 16 bytes

PAGE the number of bytes in an operating-system page

Hence, valid 〈item size〉s include, for example, ‘16 MEGABYTE’ or ‘PAGE SIZED’. Note that
INTEGER varies in size based on the backend, backend compiler, and CPU architecture (but
is commonly either 4 or 8 bytes); PAGE varies in size from operating system to operating
system; each of the other 〈data type〉s has a fixed size, as indicated above.

Message alignment

Messages are normally allocated with arbitrary alignment in memory. However,
coNCePTuaL can force a specific alignment relative to the operating-system page
size (commonly 4 KB or 8 KB, but significantly larger sizes are gaining popularity).
〈message alignment〉 is expressed as either a 〈data type〉 (described above under “Item
size”) or as an 〈expr〉 (see Section 4.2.1 [Arithmetic expressions], page 48) followed by
a 〈data multiplier〉 (also described above under “Item size”). ‘64 BYTE’, ‘3 MEGABYTE’,
and ‘QUADWORD’ are therefore all valid examples of 〈message alignment〉s. Bit counts are
rounded up to the nearest byte count, so ‘27 BITS’ is actually equivalent to ‘4 BYTES’.

The ALIGNED keyword forces coNCePTuaL to align messages on exactly the specified
alignment. Hence, a ‘HALFWORD ALIGNED’ message can begin at memory locations 0, 2, 4,
6, 8, . . . , 2k (k ∈ Z+). In contrast, the MISALIGNED keyword forces coNCePTuaL to
align messages the given number of bytes (positive or negative) past a page boundary. For
example, if pages are 8192 bytes in size then a message described as ‘HALFWORD MISALIGNED’
can begin at memory locations 2, 8194, 16386, 24578, . . . , 8192k + 2 (k ∈ Z+). Unlike
ALIGNED, MISALIGNED supports negative alignments. If the page size is 4096 bytes, then
‘-10 BYTE MISALIGNED’ enables a message to begin at memory locations 4086, 8182, 12278,
etc. The MISALIGNED alignment is taken modulo the page size. Therefore, with a 4096-byte
page size, ‘10000 BYTE MISALIGNED’ is the same as ‘1808 BYTE MISALIGNED’.

The UNALIGNED keyword explicitly specifies the default behavior, with messages aligned
on arbitrary boundaries.

Data touching

A 〈message spec〉 described as being WITH DATA TOUCHING will force every word in a
message to be both read and written (“touched”). When 〈message spec〉 describes an
outgoing message, the data will be touched before transmission. When 〈message spec〉

Chapter 4: Grammar 66

describes an incoming message, the data will be touched after reception. In a sense,
WITH DATA TOUCHING presents a more realistic assessment of network performance, as real
applications almost always access the data they send or receive. It also distinguishes between
messaging layers that implicitly touch data and those that can transmit data without having
to touch it. One would expect the latter to perform better when the data is not touched, as
the former may be paying a penalty for touching the data. However, either could perform
better when messages are sent WITH DATA TOUCHING, because the latter now has to pay the
penalty that the former has already paid.

Another form of data-touching supported by coNCePTuaL is WITH VERIFICATION.
This causes the source task to write known, but randomly generated, data into the message
before transmission and the target task to verify that every bit was correctly received.
When a message is received WITH VERIFICATION, the bit_errors variable (see Section A.2
[Predeclared variables], page 127) is updated appropriately.

WITHOUT DATA TOUCHING and WITHOUT VERIFICATION are synonymous. Both explicitly
specify the default behavior of neither touching nor verifying message contents.

Buffer control

The coNCePTuaL run-time library allocates a unique message buffer for each message
sent/received with the UNIQUE keyword. The message buffers for NONUNIQUE messages are
recycled subject to the constraint that no two concurrent transmissions will reference the
same buffer. For example, if a task performs a synchronous send followed by a synchronous
receive, those operations must be executed serially and will therefore share a message buffer.
If, instead, a task performs an asynchronous send followed by an asynchronous receive, those
operations may overlap, so coNCePTuaL will use different message buffers for the two
operations.

Message specifications enable the programmer to override the default buffer-allocation
behavior. If a message is sent FROM BUFFER 〈expr〉 or received INTO BUFFER 〈expr〉, the
message is guaranteed to be sent/received using the specified buffer number. For example,
FROM BUFFER and INTO BUFFER can be used to force a synchronous send and synchronous
receive to use different buffers or an asynchronous send and asynchronous receive to use the
same buffer. If 〈expr〉 is negative, the behavior is the same as if FROM BUFFER/INTO BUFFER
was not specified. FROM THE DEFAULT BUFFER and INTO THE DEFAULT BUFFER also explicitly
specify the default buffer-allocation behavior.

Blocking semantics

By default—or if SYNCHRONOUSLY is specified—messages are sent synchronously. That is,
a sender blocks (i.e., waits) until the message buffer is safe to reuse before it continues and a
receiver blocks until it actually receives the message. The ASYNCHRONOUSLY keyword specifies
that messages should be sent and received asynchronously. That is, the program merely
posts the message (i.e., declares that it should eventually be sent and/or received) and
immediately continues executing. Asynchronous messages must be completed as described
in Section 4.4.4 [Awaiting completion], page 69.

Chapter 4: Grammar 67

4.4.2 Sending

The SEND statement is fundamental to coNCePTuaL. It is used to send a multiple mes-
sages from multiple source tasks to multiple target tasks. The syntax is formally specified
as follows:
〈send stmt〉 ::= 〈source task〉

[ASYNCHRONOUSLY] SENDS
〈message spec〉
TO [UNSUSPECTING] 〈target tasks〉

| 〈source task〉
[ASYNCHRONOUSLY] SENDS
〈message spec〉
TO 〈target tasks〉
WHO RECEIVE IT
〈recv message spec〉

〈source task〉 is described in Section 4.3.2 [Source tasks], page 62; 〈message spec〉 and
〈recv message spec〉 are described in Section 4.4.1 [Message specifications], page 63; and,
〈target tasks〉 is described in Section 4.3.3 [Target tasks], page 62.

The SEND statement’s simplest form, “〈source task〉 SENDS 〈message spec〉 TO
〈target tasks〉”, is fairly straightforward. The following is a example:

TASK 0 SENDS A 0 BYTE MESSAGE TO TASK 1

The only subtlety in the preceding statement is that it implicitly causes task 1 to perform a
corresponding receive. This receive can be suppressed by adding the keyword UNSUSPECTING
before the 〈target tasks〉 description:

TASK 0 SENDS A 0 BYTE MESSAGE TO UNSUSPECTING TASK 1

Here are some further examples of valid 〈send stmt〉s:
• ALL TASKS SEND A 64 KILOBYTE MESSAGE TO TASK 0

• TASK num_tasks-1 SENDS 5 53 BYTE PAGE ALIGNED MESSAGES TO ALL OTHER TASKS

• TASKS upper SUCH THAT upper>=num_tasks/2 ASYNCHRONOUSLY SEND A 0 BYTE
MESSAGE TO TASK upper/2

• TASKS nonzero SUCH THAT nonzero>0 SEND nonzero 1E3 BYTE MESSAGES TO
UNSUSPECTING TASK 0

One subtlety of the SEND statement when used without UNSUSPECTING involves the or-
derings of the sends and receives. The rule is that receives are posted before sends. Further-
more, 〈restricted ident〉s (see Section 4.3.1 [Restricted identifiers], page 61) are evaluated
in order from 0 to num tasks − 1. The implication is that a statement such as ‘TASKS ev
SUCH THAT ev IS EVEN /\ ev<6 SEND A 4 WORD MESSAGE TO TASK ev+2’ is exactly equivalent
to the following ordered sequence of statements (assuming num tasks ≥ 5):
1. TASK 2 RECEIVES A 4 WORD MESSAGE FROM TASK 0

2. TASK 4 RECEIVES A 4 WORD MESSAGE FROM TASK 2

3. TASK 6 RECEIVES A 4 WORD MESSAGE FROM TASK 4

4. TASK 0 SENDS A 4 WORD MESSAGE TO UNSUSPECTING TASK 2

5. TASK 2 SENDS A 4 WORD MESSAGE TO UNSUSPECTING TASK 4

Chapter 4: Grammar 68

6. TASK 4 SENDS A 4 WORD MESSAGE TO UNSUSPECTING TASK 6

(The RECEIVE statement is described in Section 4.4.3 [Receiving], page 68.)
If the above sequence were executed, tasks 2, 4, and 6 would immediately block on their

receives (steps 1–3). Task 0 would awaken task 2 by sending it a message (step 4). Then,
task 2 would be able to continue to step 5 at which point it would send a message to task 4.
Task 4 would then finally be able to send a message to task 6 (step 6). Hence, even though
the original coNCePTuaL statement encapsulates multiple communication operations, the
component communications proceed sequentially because of data dependences and because
the operations are blocking.

As should now be apparent, there are a number of attributes associated with every
message transmission:
• synchronous vs. asynchronous operation
• unique vs. recycled message buffers
• unaligned vs. aligned vs. misaligned message buffers
• no data touching vs. data touching vs. data verification
• implicit vs. explicit message-buffer selection

When UNSUSPECTING is omitted, the implicit RECEIVE statement normally inherits all
of the attributes of the corresponding SEND. However, the second form of a 〈send stmt〉,
which contains a WHO RECEIVES IT (or WHO RECEIVES THEM) clause, enables the receiver’s
attributes to be overridden on a per-attribute basis. For instance, consider the following
SEND statement:

TASK 0 SENDS A 1 MEGABYTE MESSAGE TO TASK 1 WHO RECEIVES IT
ASYNCHRONOUSLY

The alternative sequence of statements that does not use WHO RECEIVES IT is less straight-
forward:
1. TASK 1 ASYNCHRONOUSLY RECEIVES A 1 MEGABYTE MESSAGE FROM TASK 0

2. TASK 0 SENDS A 1 MEGABYTE MESSAGE TO UNSUSPECTING TASK 1

Some further examples of WHO RECEIVES IT follow:
TASKS left SUCH THAT left IS EVEN SEND 5 2 KILOBYTE 64 BYTE ALIGNED
MESSAGES TO TASKS left+1 WHO RECEIVE THEM AS UNALIGNED MESSAGES WITH
DATA TOUCHING

TASK num_tasks-1 ASYNCHRONOUSLY SENDS A 1E5 BYTE MESSAGE WITH
VERIFICATION TO TASK 0 WHO RECEIVES IT SYNCHRONOUSLY

TASK leaf SUCH THAT KNOMIAL_CHILDREN(leaf,2)=0 SENDS A UNIQUE 1536
BYTE MESSAGE WITH DATA TOUCHING TO TASK KNOMIAL_PARENT(leaf,2) WHO
RECEIVES IT ASYNCHRONOUSLY AS A NONUNIQUE QUADWORD ALIGNED MESSAGE
WITHOUT DATA TOUCHING INTO BUFFER KNOMIAL_PARENT(leaf,2)

4.4.3 Receiving

Section 4.4.2 [Sending], page 67, mentioned the 〈send stmt〉’s UNSUSPECTING keyword,
which specifies that the targets should not implicitly perform a receive operation. Because

Chapter 4: Grammar 69

every send must have a matching receive, coNCePTuaL offers a RECEIVE statement which
explicitly receives a set of messages. A 〈receive stmt〉 is much like a 〈send stmt〉 (see
Section 4.4.2 [Sending], page 67) with the 〈source task〉 and 〈target tasks〉 in the reverse
order:

〈receive stmt〉 ::= 〈target tasks〉
[ASYNCHRONOUSLY] RECEIVE
〈message spec〉
FROM 〈source task〉

〈target tasks〉 is described in Section 4.3.3 [Target tasks], page 62; 〈message spec〉 is de-
scribed in Section 4.4.1 [Message specifications], page 63; and, 〈source task〉 is described in
Section 4.3.2 [Source tasks], page 62.

For each message sent via a SEND. . .TO UNSUSPECTING statement there must be a
RECEIVE statement that receives a message of the same size. The 〈target tasks〉’s
〈message spec〉 can, however, specify different values for message uniqueness, message
alignment, and data touching. In addition, the source and target do not need to agree on
the use of the ASYNCHRONOUSLY keyword. The only restriction is that WITH VERIFICATION
will return spurious results if used by the target but not by the source. Hence, the
following 〈send stmt〉 and 〈receive stmt〉 correctly match each other:

TASK 0 SENDS 3 4 KILOBYTE MESSAGES TO UNSUSPECTING TASK 1

TASK 1 ASYNCHRONOUSLY RECEIVES 3 UNIQUE 4 KILOBYTE 48 BYTE ALIGNED
MESSAGES WITH DATA TOUCHING FROM TASK 0.

In general, it is better to use a single SEND statement with a WHO RECEIVES IT clause (see
Section 4.4.2 [Sending], page 67) than a RECEIVE plus a matching SEND. . .TO UNSUSPECTING;
the former is less error-prone than the latter. However, the latter is useful for programs in
which a set of receives is posted, then the tasks perform various communication, computa-
tion, and synchronization operations, and—towards the end of the program—the matching
sends are posted. That sort of split-phase structure requires separate SEND and RECEIVE
statements.

4.4.4 Awaiting completion

When a message is sent or received asynchronously it must eventually be completed. In
some messaging layers, asynchronous messages are not even sent or received until completion
time. coNCePTuaL provides the following statement for completing messages that were
send/received asynchronously:

〈wait stmt〉 ::= 〈source task〉
AWAITS COMPLETION

That is, a 〈wait stmt〉 simply specifies the set of tasks that should block until all of their
pending communications complete. 〈source task〉 is as defined in Section 4.3.2 [Source
tasks], page 62. Note that a 〈wait stmt〉 blocks until all pending communications complete.
coNCePTuaL does not provide finer-grained control over completions. It is safe, however,
for a task to AWAIT COMPLETION even if it has no asynchronous messages pending.

Chapter 4: Grammar 70

4.4.5 Multicasting

Although a single 〈send stmt〉 (see Section 4.4.2 [Sending], page 67) can specify multiple
messages at once, these messages are sent one at a time. Multicasting is a form of collective
communication in which a set of tasks collaborates to deliver a message from a source to
multiple targets. On many systems, multicasting a message to N tasks is more efficient
than sending a sequence of N individual messages. coNCePTuaL supports multicasting
as follows:

〈mcast stmt〉 ::= 〈source task〉
[ASYNCHRONOUSLY] MULTICASTS
〈message spec〉
TO 〈target tasks〉

Unlike 〈send stmt〉s, 〈mcast stmt〉s do not support the UNSUSPECTING keyword. This is
because MULTICASTS is a collective operation: all parties are active participants in delivering
messages to the 〈target tasks〉.

〈source task〉 (see Section 4.3.2 [Source tasks], page 62) and 〈target tasks〉 (see Sec-
tion 4.3.3 [Target tasks], page 62) can be either disjoint or overlapping sets. That is, either
of the following is legal:

TASK 0 MULTICASTS A 16 BYTE MESSAGE TO TASKS recip SUCH THAT recip<4
TASK 0 MULTICASTS A 16 BYTE MESSAGE TO TASKS recip SUCH THAT recip>=4

Note that in the first 〈mcast stmt〉, task 0 both sends and receives a message, while in the
second 〈mcast stmt〉, task 0 sends but does not receive.

4.4.6 Synchronizing

coNCePTuaL enables sets of tasks to perform barrier synchronization. The semantics
are that no task can finish synchronizing until all tasks have started synchronizing. The
syntax is as follows:

〈sync stmt〉 ::= 〈source task〉
SYNCHRONIZES

A 〈sync stmt〉 can be used to ensure that one set of statements has completed before
beginning another set. For example, a coNCePTuaL program might have a set of tasks
post a series of asynchronous receives (see Section 4.4.3 [Receiving], page 68), then make
‘ALL TASKS SYNCHRONIZE’ before having another set of tasks perform the corresponding
UNSUSPECTING sends (see Section 4.4.2 [Sending], page 67). This procedure ensures that all
of the target tasks are ready to receive before the source tasks start sending to them.

4.5 I/O statements

coNCePTuaL provides two statements for presenting information. One statement
writes simple messages to the standard output device and is intended to be used for pro-
viding status information during the run of a program. The other statement provides a
powerful mechanism for storing performance and correctness data to a log file.

Chapter 4: Grammar 71

4.5.1 Utilizing log-file comments

〈output stmt〉s and 〈log stmt〉s have limited access to the 〈key :value〉 pairs that are
written as comments at the top of every log file as shown in Section 3.4.1 [Log-file format],
page 23. Given a key, key, the string expression ‘THE VALUE OF key ’ represents the value
associated with that key or the empty string if key does not appear in the log-file comments:
〈string or log comment〉 ::= 〈string〉

| THE VALUE OF 〈string〉
That is, ‘"CPU frequency"’ means the literal string “CPU frequency” while ‘THE VALUE
OF "CPU frequency"’ translates to string like “1300000000 Hz (1.3 GHz)”. Environment
variables are also considered keys and are therefore acceptable input to a THE VALUE OF
construct.

4.5.2 Writing to standard output

coNCePTuaL’s OUTPUT keyword is used to write a message from one or more source
tasks (see Section 4.3.2 [Source tasks], page 62) to the standard output device. This is
useful for providing progress reports during the execution of long-running coNCePTuaL
programs. An 〈output stmt〉 looks like this:
〈output stmt〉 ::= 〈source task〉

OUTPUTS
〈expr〉 | 〈string or log comment〉
[AND 〈expr〉 | 〈string or log comment〉]*

The following are some sample 〈output stmt〉s:
TASK 0 OUTPUTS "Hello, world!"

TASKS nr SUCH THAT nr>0 OUTPUT nr AND "’s parent is " AND nr>>1 AND
" and its children are " AND nr<<1 AND " and " AND nr<<1+1

ALL TASKS me OUTPUT "Task " AND me AND " is running on host " AND THE
VALUE OF "Host name" AND " and plans to send to task " AND (me+1) MOD
num_tasks

OUTPUT does not implicitly output spaces between terms. Hence, ‘OUTPUT "Yes" AND
"No"’ will output “YesNo”, not “Yes No”. Also, AND binds tighter as a binary operator
(see Section 4.2.1 [Arithmetic expressions], page 48) than within an 〈output stmt〉. Conse-
quently, ‘OUTPUT 6 AND 3’ will produce “2”, not “63”. Although it is unlikely that a program
would ever need to output two arithmetic expressions with no intervening text, an empty
string can be used for this purpose: ‘OUTPUT 6 AND "" AND 3’.

An 〈output stmt〉 implicitly outputs a newline character at the end. Additional newline
characters can be output by embedding ‘\n’ in a string. (see Section 4.1 [Primitives],
page 46.) coNCePTuaL does not provide a means for suppressing the newline, however.

4.5.3 Writing to a log file

After performing a network correctness or performance test it is almost always desirable
to store the results in a file. coNCePTuaL has language support for writing tabular data
to a log file. The 〈log stmt〉 command does the bulk of the work:

Chapter 4: Grammar 72

〈log stmt〉 ::= 〈source task〉
LOGS
〈aggr expr〉 AS 〈string or log comment〉
[AND 〈aggr expr〉 AS 〈string or log comment〉]*

The idea behind a 〈log stmt〉 is that a set of source tasks (see Section 4.3.2 [Source tasks],
page 62) log an aggregate expression (see Section 4.2.3 [Aggregate expressions], page 59)
to a log file under the column heading 〈string or log comment〉. Each task individually
maintains a separately named log file so there is no ambiguity over which task wrote which
entries.

Each (static) LOGS statement in a coNCePTuaL program specifies one or more columns
of the log file. Every dynamic execution of a LOGS statement writes a single row to the log
file. A single LOGS statement should suffice for most coNCePTuaL programs.

The following are some examples of 〈log stmt〉s:

ALL TASKS LOG bit_errors AS "Bit errors"

TASK 0 LOGS THE msgsize AS "Bytes" AND
THE MEDIAN OF (1E6*bytes_sent)/(1M*elapsed_usecs) AS "MB/s"

The first example produces a log file like the following:� �
"Bit errors"
"(all data)"
3
 	
The second example produces a log file like this:� �
"Bytes","MB/s"
"(only value)","(median)"
65536,179.9416266
 	
Note that in each log file, the coNCePTuaL run-time system writes two rows of column
headers for each column. The first row contains 〈string or log comment〉 as is. The second
row describes the 〈aggr func〉 (see Section 4.2.4 [Aggregate functions], page 60) used to
aggregate the data. One or more rows of data follow.

Assume that the second 〈log stmt〉 presented above appears within a loop (see Sec-
tion 4.7.2 [Iterating], page 79). It is therefore important to include the THE keyword before
‘msgsize’ to assert that the expression ‘msgsize’ is constant across invocations of the
〈log stmt〉 and that, consequently, only a single row of data should be written to the log
file. Using ‘msgsize’ without the THE would produce a column of data with one row per
〈log stmt〉 invocation:

Chapter 4: Grammar 73� �
"Bytes","MB/s"
"(all data)","(median)"
65536,179.9416266
65536,
65536,
65536,
65536,

.

.

.
 	
The rules that determine how LOGS statements produce rows and columns of a log file

are presented below:
1. Each static LOGS statement (and AND clause within a LOGS statement) in a program

produces a unique column.
2. Each dynamic execution of a LOGS statement appends a row to the column(s) it de-

scribes.
3. Each top-level complex statement (see Section 4.9 [Complete programs], page 87) pro-

duces a new table in the log file.

Note that the choice of column name is inconsequential for determining what columns
are written to the log file:

TASK 0 LOGS 314/100 AS "Pi" AND 22/7 AS "Pi"� �
"Pi","Pi"
"(all data)","(all data)"
3.14,3.142857143
 	
Computing aggregates

What if ‘msgsize’ takes on a number of values throughout the execution of the program
and for each value a number of runs is performed? How would one log the median of each set
of data? Using ‘THE msgsize’ won’t work because the message size is not constant. Using
‘msgsize’ alone won’t work either because coNCePTuaL would then take the median
of the times gathered across all message sizes, which is undesirable. The solution is for
the program to specify explicitly when aggregate functions (MEDIAN and all of the other
functions listed in Section 4.2.4 [Aggregate functions], page 60) compute a value:
〈flush stmt〉 ::= 〈source task〉

COMPUTES AGGREGATES

The intention is that an inner loop might LOG data after every iteration and an outer
loop would ‘COMPUTE AGGREGATES’ after each iteration.

4.6 Other statements

coNCePTuaL contains a few more statements than those described in Section 4.4
[Communication statements], page 63 and Section 4.5 [I/O statements], page 70. As there
is no category that clearly describes the remaining statements, they are listed here in this
“catch-all” section.

Chapter 4: Grammar 74

4.6.1 Resetting counters

It is common for benchmarks to perform a few warmup iterations before beginning
the actual test. This hides the time needed initially to establish connections, populate
the various processor and network caches, etc., making subsequent measurements more
uniform. However, these warmup iterations, like everything else in coNCePTuaL, exhibit
the side effect of updating coNCePTuaL’s dynamic variables (see Section A.2 [Predeclared
variables], page 127) such as elapsed_usecs and msgs_sent. The solution is to reset all of
those dynamic variables to zero before beginning the core part of the program. The RESET
statement does just that:
〈reset stmt〉 ::= 〈source task〉

RESETS ITS COUNTERS

Hence, writing ‘ALL TASKS RESET THEIR COUNTERS’ causes each task to reset all of the
variables listed in Section A.2 [Predeclared variables], page 127—with the exception of
num_tasks—to zero. Note that ITS and THEIR, like RESET and RESETS, are considered
synonyms (see Section 4.1 [Primitives], page 46).

4.6.2 Asserting conditions

coNCePTuaL programs can encode the run-time conditions that must hold in order
for the test to run properly. This is achieved through assertions, which are expressed as
follows:
〈assert stmt〉 ::= ASSERT THAT 〈string〉

WITH 〈rel expr〉
〈string〉 is a message to be reported to the user if the assertion fails. 〈rel expr〉 is

a relational expression (as described in Section 4.2.5 [Relational expressions], page 60)
that must evaluate to true for the program to continue running. Assertion failures are
considered fatal errors. They cause the coNCePTuaL program to abort immediately.

Here are some sample 〈assert stmt〉s:
ASSERT THAT "the bandwidth test requires at least two tasks" WITH
num_tasks >= 2

ASSERT THAT "pairwise ping-pongs require an even number of task"
WITH num_tasks IS EVEN

ASSERT THAT "this program requires a square number of tasks" WITH
SQRT(num_tasks)**2 = num_tasks

(For the last example, recall that coNCePTuaL expressions are of integer type. Hence,
the example’s 〈rel expr〉 is mathematically equivalent to b

√
Nc2 = N , which is true if and

only if N is a square.)

4.6.3 Delaying execution

It is sometimes interesting to measure the progress of a communication pattern when
delays are inserted at various times on various tasks. coNCePTuaL provides two mecha-
nisms for inserting delays: one that relinquishes the CPU while delaying (SLEEP) and one
that hoards it (COMPUTE).

Chapter 4: Grammar 75

〈delay stmt〉 ::= 〈source task〉
SLEEPS | COMPUTES
FOR 〈expr〉 〈time unit〉

〈source task〉 (see Section 4.3.2 [Source tasks], page 62) specifies the set of tasks that
will stall. 〈time unit〉 must be one of the following keywords:
• MICROSECONDS

• MILLISECONDS

• SECONDS

• MINUTES

• HOURS

• DAYS

〈expr〉 (see Section 4.2.1 [Arithmetic expressions], page 48) specifies the number of
〈time unit〉s for which to delay.

Delay times are only approximate. SLEEP’s accuracy depends upon the operating-
system’s clock resolution or length of time quantum (commonly measured in milliseconds
or tens of milliseconds). COMPUTE, which is implemented by repeatedly reading a variable
until the desired amount of time elapses, is calibrated during the coNCePTuaL run-time
system’s initialization phase and can be adversely affected by intermittant system load.
Both forms of 〈delay stmt〉 attempt to measure wall-clock time (“real time”), not just the
time the program is running (“virtual time”). Because the delay times are approximate,
it is strongly recommended that the elapsed_usecs variable (see Section A.2 [Predeclared
variables], page 127) be employed to determine the actual elapsed time.

4.6.4 Touching memory

While the statements described in Section 4.6.3 [Delaying execution], page 74 delay for
a specified length of time, it is also possible to delay for the duration of a specified amount
of “work”. “Work” is expressed in terms of memory accesses. That is, a coNCePTuaL
program can touch (i.e., read plus write) data with a given stride from a memory region
of a given size. By varying these parameters, a program can emulate an application’s
computation by hoarding the CPU or any level of the memory hierarchy.
〈touch stmt〉 ::= 〈source task〉

TOUCHES
[〈expr〉 〈data type〉 OF]
AN 〈item size〉 MEMORY REGION
[〈expr〉 TIMES]
[WITH STRIDE 〈expr〉 〈data type〉 | WITH RANDOM STRIDE]

〈item size〉 and 〈data type〉 are described in Section 4.4.1 [Message specifications], page 63
and 〈expr〉 is described in Section 4.2.1 [Arithmetic expressions], page 48.

As shown by the formal definition of 〈touch stmt〉 the required components are a
〈source task〉 and the size of the memory region to touch. By default, every WORD (see
Section 4.4.1 [Message specifications], page 63) of memory in the region is touched exactly
once. The type of data that is touched can be varied with an ‘〈expr〉 〈data type〉 OF’ clause.
For instance, ‘100 BYTES OF’ of a memory region will touch individual bytes. An optional

Chapter 4: Grammar 76

repeat count enables the memory region (or subset thereof) to be touched multiple times.
Hence, if ‘TASK 0 TOUCHES A 6 MEGABYTE MEMORY REGION 5 TIMES’, then the touch will be
performed as if ‘TASK 0’ were told to ‘TOUCH 5*6M BYTES OF A 6 MEGABYTE MEMORY REGION
1 TIME’ or simply to ‘TOUCH 5*6M BYTES OF A 6 MEGABYTE MEMORY REGION’.

By default, every 〈data type〉 of data is touched. However, a 〈touch stmt〉 provides for
touching only a subset of the 〈data type〉s in the memory region. By writing ‘WITH STRIDE
〈expr〉 〈data type〉’, only the first 〈data type〉 out of every 〈expr〉 will be touched. Instead
of specifying an exact stride, the memory region can be accessed in random order using the
WITH RANDOM STRIDE clause.

Unless the number of touches and data type are specified explicitly, the number of WORDs
that are touched is equal to the size of the memory region divided by the stride length
then multiplied by the repeat count. Therefore, if ‘TASK 0 TOUCHES AN 8 MEGABYTE MEMORY
REGION 2 TIMES WITH STRIDE 8 WORDS’, then a total of (223/(4× 8))× 2 = 524288 touches
will be performed. For the purpose of the preceding calculation, ‘WITH RANDOM STRIDE’
should be treated as if it were ‘WITH STRIDE 1 WORD’ (again, unless the number of touches
and data type are specified explicitly).

To save memory, all TOUCH statements in a coNCePTuaL program access subsets of the
same region of memory, whose size is determined by the maximum needed. However, each
dynamic execution of a 〈touch stmt〉 starts touching from where the previous execution left
off. For example, consider the following statement:

TASK 0 TOUCHES 100 WORDS OF A 200 WORD MEMORY REGION

The first time that that statement is executed within a loop (see Section 4.7.2 [Iterating],
page 79), the first 200 words are touched. The second time, the second 200 words are
touched. The third time, the index into the region wraps around and the first 200 words
are touched again.

Each static 〈touch stmt〉 maintains its own index into the memory region. Therefore, the
first of the following two statements will terminate successfully (assuming it’s not executed
in the body of a loop) while the second will result in a run-time error because the final byte
of the final word does not fit within the given memory region.

TASK 0 TOUCHES 100 WORDS OF A 799 BYTE MEMORY REGION THEN
TASK 0 TOUCHES 100 WORDS OF A 799 BYTE MEMORY REGION

FOR 2 REPETITIONS TASK 0 TOUCHES 100 WORDS OF A 799 BYTE MEMORY REGION

(THEN is described in Section 4.7.1 [Combining statements], page 78, and FOR. . .
REPETITIONS is described in Section 4.7.2 [Iterating], page 79.) The first statement shown
above touches the same 100 words (400 bytes) in each of the two 〈touch stmt〉s. The
second statement touches the first 100 words the first time the 〈touch stmt〉 is executed
and fails when trying to touch the (only partially extant) second 100 words.

4.6.5 Reordering task IDs

coNCePTuaL distinguishes between “task IDs”, which are used in task descriptions
(see Section 4.3 [Task descriptions], page 61) and “processor IDs”, which are assigned
by the underlying communication layer. As stated in Section 3.3 [Running coNCePTuaL
programs], page 21, a coNCePTuaL program has no control over how processor IDs map to
physical processors. It therefore has no way to specify, for instance, that a set of tasks must

Chapter 4: Grammar 77

run on the same multiprocessor node (or on different nodes, for that matter). Initially, every
task’s task ID is set equal to its processor ID. However, while processor IDs are immutable,
task IDs can be changed dynamically during the execution of a program. Altering task
IDs can simplify coNCePTuaL programs that might otherwise need to evaluate complex
expressions to determine peer tasks. coNCePTuaL enables either a specific or a randomly
selected task to be assigned to a given processor:

〈processor stmt〉 ::= 〈source task〉
IS ASSIGNED TO
PROCESSOR 〈expr〉 | A RANDOM PROCESSOR

In addition to performing the specified processor assignment, coNCePTuaL will per-
form an additional, implicit processor assignment in order to maintain a bijection between
task IDs and processor IDs (i.e., every task ID corresponds to exactly one processor ID and
every processor ID corresponds to exactly one task ID). Consider the following statement:

TASK n SUCH THAT n<(num_tasks+1)/2 IS ASSIGNED TO PROCESSOR n*2

If num_tasks is ‘8’ the preceding statement will cause ‘TASK 0’ to refer to processor 0,
‘TASK 1’ to refer to processor processor 2, ‘TASK 2’ to refer to processor 4, and ‘TASK 3’ to
refer to processor 6. What may be unintuitive is that the remaining tasks will not map
to their original processors, as doing so would violate the bijection invariant. To clarify
coNCePTuaL’s implicit processor assignments the following timeline illustrates the ex-
ecution of ‘TASK n SUCH THAT n<(num_tasks+1)/2 IS ASSIGNED TO PROCESSOR n*2’ when
num_tasks is ‘8’:

‘n’ ‘TASK 0’ ‘TASK 1’ ‘TASK 2’ ‘TASK 3’ ‘TASK 4’ ‘TASK 5’ ‘TASK 6’ ‘TASK 7’

— 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 0 2 1 3 4 5 6 7
2 0 2 4 3 1 5 6 7
3 0 2 4 6 1 5 3 7

Initially, task and processor IDs are equal. When n takes on the value 0, coNCePTuaL
performs the equivalent of ‘TASK 0 IS ASSIGNED TO PROCESSOR 0’, which does not change
the task ID to processor ID mapping. When n is 1, coNCePTuaL performs the equiv-
alent of ‘TASK 1 IS ASSIGNED TO PROCESSOR 2’, which sets task 1’s processor to 2. How-
ever, because task 2 also has processor 2, coNCePTuaL implicitly performs the equiv-
alent of ‘TASK 2 IS ASSIGNED TO PROCESSOR 1’ in order to preserve the unique task ID to
processor ID mapping. When n is 2, coNCePTuaL performs the equivalent of ‘TASK 2 IS
ASSIGNED TO PROCESSOR 4’ and, because task 4 also has processor 4, the equivalent of ‘TASK
4 IS ASSIGNED TO PROCESSOR 1’. Finally, when n is 3, coNCePTuaL performs the equiva-
lent of ‘TASK 3 IS ASSIGNED TO PROCESSOR 6’ and, because task 6 also has processor 6, the
equivalent of ‘TASK 6 IS ASSIGNED TO PROCESSOR 3’. Thus, coNCePTuaL maintains the
invariant that after any processor assignment every task corresponds to a unique processor
and every processor corresponds to a unique task.

4.6.6 Injecting arbitrary code

There are some features that are outside the scope of the coNCePTuaL language.
However, coNCePTuaL provides a mechanism for inserting backend-specific statements

Chapter 4: Grammar 78

into the control flow of a coNCePTuaL program. This feature is intended for users with
specific needs that can’t be satisfied through the conventional coNCePTuaL statements.
〈backend stmt〉 ::= 〈source task〉

BACKEND EXECUTES
〈expr〉 | 〈string〉
[AND 〈expr〉 | 〈string〉]*

The following example assumes a C-based backend:
ALL TASKS taskID BACKEND EXECUTE "my_c_function(" AND taskID AND ");"

The my_c_function() function needs be defined in some object file and linked with the
coNCePTuaL-generated code.

Most users will never need to BACKEND EXECUTE code. In fact, most users should not use
〈backend stmt〉s as they produce nonportable code. One of coNCePTuaL’s goals is for
programs to be understandable by people unfamiliar with the language, and 〈backend stmt〉s
thwart that goal. However, 〈backend stmt〉s do help ensure that all of the target lan-
guage/library’s features are available to coNCePTuaL.

4.7 Complex statements

The coNCePTuaL statements presented in Section 4.4 [Communication statements],
page 63, Section 4.5 [I/O statements], page 70, and Section 4.6 [Other statements], page 73
are all known as simple statements. This section expands upon the statements already
introduced by presenting complex statements. In its most basic form, a 〈complex stmt〉 is
just a 〈simple stmt〉. However, the primary purpose of a 〈complex stmt〉 is to juxtapose
simple statements and other complex statements into more expressive forms.

Complex statements take one of the following forms, each of which is explained later in
this section:
〈complex stmt〉 ::= 〈simple stmt〉 [THEN 〈complex stmt〉]

〈simple stmt〉 ::= FOR 〈expr〉 REPETITIONS [PLUS 〈expr〉 WARMUP REPETITIONS
[AND A SYNCHRONIZATION]] 〈simple stmt〉

| FOR EACH 〈ident〉 IN 〈range〉 [‘,’ 〈range〉]* 〈simple stmt〉
| FOR 〈expr〉 〈time unit〉 〈simple stmt〉
| LET 〈let binding〉 [AND 〈let binding〉]* WHILE 〈simple stmt〉
| IF 〈rel expr〉 THEN 〈simple stmt〉 [OTHERWISE 〈simple stmt〉]

In addition, this section explains how to group multiple 〈complex stmt〉s into a single se-
mantic unit.

4.7.1 Combining statements

The THEN keyword separates statements that are to be performed sequentially. For
example, a simple ping-pong communication can be expressed as follows:

ALL TASKS RESET ALL COUNTERS THEN
TASK 0 SENDS A 0 BYTE MESSAGE TO TASK 1 THEN
TASK 1 SENDS A 0 BYTE MESSAGE TO TASK 0 THEN
TASK 0 LOGS elapsed_usecs/2 AS "One-way latency"

Chapter 4: Grammar 79

There is no implicit intertask synchronization across THEN statements. Consequently, the
two communications specified in the following statement will be performed concurrently:

TASK 0 ASYNCHRONOUSLY SENDS AN 8 KILOBYTE MESSAGE TO TASK 1 THEN
TASK 1 ASYNCHRONOUSLY SENDS AN 8 KILOBYTE MESSAGE TO TASK 0 THEN
ALL TASKS AWAIT COMPLETION

4.7.2 Iterating

coNCePTuaL provides a variety of looping constructs designed to repeatedly execute
a 〈simple stmt〉.

Counted loops

The simplest form of iteration in coNCePTuaL repeats a 〈simple stmt〉 a given number
of times. The syntax is simply “FOR 〈expr〉 REPETITIONS 〈simple stmt〉”. As could be
expected, the 〈expr〉 term (see Section 4.2.1 [Arithmetic expressions], page 48) specifies the
number of repetitions to perform. Hence, the following 〈simple stmt〉 outputs the phrase “I
will not talk in class” 100 times:

FOR 100 REPETITIONS ALL TASKS OUTPUT "I will not talk in class."

FOR. . .REPETITIONS can optionally specify a number of “warmup” repetitions to perform
in addition to the base number of repetitions. The syntax is “FOR 〈expr〉 REPETITIONS
PLUS 〈expr〉 WARMUP REPETITIONS 〈simple stmt〉”. During warmup repetitions, the OUTPUTS
statement (see Section 4.5.2 [Writing to standard output], page 71), the LOGS statement (see
Section 4.5.3 [Writing to a log file], page 71), and the COMPUTES AGGREGATES statement (see
Section 4.5.3 [Writing to a log file], page 71) are all suppressed (i.e., they have no effect).
Many benchmarks synchronize all tasks after performing a set of warmup repetitions. This
behavior can be expressed conveniently as part of a coNCePTuaL FOR loop by appending
the AND A SYNCHRONIZATION clause:

FOR 1000 REPETITIONS PLUS 3 WARMUP REPETITIONS AND A SYNCHRONIZATION
TASK 0 MULTICASTS A 1 MEGABYTE MESSAGE TO ALL OTHER TASKS

coNCePTuaL also provides a separate SYNCHRONIZES statement. This is described in
Section 4.4.6 [Synchronizing], page 70.

The importance of performing warmup repetitions is that many communication layers
give atypically poor performance on the first few transmissions. This may be because the
messages miss in the cache; because the communication layer needs to establish connections
between pairs of communicating tasks; or, because the operating system needs to “register”
message buffers with the network interface. Regardless of the reason, specifying warmup
repetitions helps make performance measurements less variable.

Range loops

Range loops are coNCePTuaL’s most powerful looping construct. Unlike the counted-
loop construct presented above, a range loop binds a variable to a different value on each
iteration. Range loops have the following syntax:

FOR EACH 〈ident〉
IN 〈range〉 [, 〈range〉]*

Chapter 4: Grammar 80

〈simple stmt〉
A 〈range〉 is a comma-separated list of 〈expr〉s within curly braces. An ellipsis can be

used to indicate that coNCePTuaL should fill in the missing numbers. More formally,

〈range〉 ::= ‘{’
〈expr〉 [‘,’ 〈expr〉]*
[‘, ... ,’ 〈expr〉]
‘}’

For a range loop, coNCePTuaL successively binds a 〈restricted ident〉 (see Section 4.3.1
[Restricted identifiers], page 61) to each 〈expr〉 in each 〈range〉 then evaluates the given
〈simple stmt〉. Unlike all other uses of a 〈restricted ident〉, the variable is not implicitly
constrained to being a number from 0 to numtasks-1 within a FOR EACH statement.

The following are some examples of the FOR EACH statement from simplest to most elab-
orate. Each example uses ‘i’ as the loop variable and ‘TASK 0 OUTPUTS i’ as the loop body.
The output from each example is shown with a “ a ” symbol preceding each line.

FOR EACH i IN {8, 7, 5, 4, 5} TASK 0 OUTPUTS i
a 8
a 7
a 5
a 4
a 5

FOR EACH i IN {1, ..., 5} TASK 0 OUTPUTS i
a 1
a 2
a 3
a 4
a 5

FOR EACH i IN {5, ..., 1} TASK 0 OUTPUTS i
a 5
a 4
a 3
a 2
a 1

FOR EACH i IN {1, ..., 5}, {8, 7, 5, 4, 5} TASK 0 OUTPUTS i
a 1
a 2
a 3
a 4
a 5
a 8
a 7
a 5
a 4
a 5

Chapter 4: Grammar 81

FOR EACH i IN {1, 4, 7, ..., 30} TASK 0 OUTPUTS i
a 1
a 4
a 7
a 10
a 13
a 16
a 19
a 22
a 25
a 28

FOR EACH i IN {3**1, 3**2, 3**3, ..., 3**7} TASK 0 OUTPUTS i
a 3
a 9
a 27
a 81
a 243
a 729
a 2187

FOR EACH i IN {0}, {1, 2, 4, ..., 256} TASK 0 OUTPUTS i
a 0
a 1
a 2
a 4
a 8
a 16
a 32
a 64
a 128
a 256

When coNCePTuaL fills in the numbers summarized by ‘...’ it first looks for an
arithmetic progression, then a geometric progression. If coNCePTuaL finds neither an
arithmetic nor a geometric progression, it re-evaluates all of the 〈expr〉s in floating-point
context (see Section 4.2.1 [Arithmetic expressions], page 48) and tries once again to find a
geometric progression. If a pattern is still not found, the compiler aborts with a run-time
error message. This is why the final example above places the ‘0’ in a separate range; ‘1,
2, 4, ..., 256’ is a geometric pattern in which each number is twice the previous. ‘0, 1,
2, 4, ..., 256’ violates that pattern, because 1 is not twice 0. The number following the
ellipsis is not included when calculating the pattern. Hence, the ‘{1, 4, 7, ..., 30}’ range
shown above is acceptable to coNCePTuaL. If the number following the ellipsis is less
than (respectively, greater than) the first number in an increasing (respectively, decreasing)
range, then the loop will silently not execute. Here are some examples to help make those
points:

FOR EACH i IN {20, 30, 40, ..., 55} TASK 0 OUTPUTS i
a 20
a 30

Chapter 4: Grammar 82

a 40
a 50

FOR EACH i IN {20, 30, 40, ..., 30} TASK 0 OUTPUTS i
a 20
a 30

FOR EACH i IN {20, 30, 40, ..., 20} TASK 0 OUTPUTS i
a 20

FOR EACH i IN {20, 30, 40, ..., 10} TASK 0 OUTPUTS i
a [no output]

The examples so far have all used constant expressions. However, as indicated by the
definition of 〈range〉 above, any arbitrary arithmetic expression (see Section 4.2.1 [Arith-
metic expressions], page 48) is valid. Assuming that ‘x’ is currently bound to 123, the
following example will produce the indicated output:

FOR EACH i IN {x*10, x*9, x*8, ..., x*3}, {x+50}, {2*x+3, 3*x+2}
TASK 0 OUTPUTS i
a 1230
a 1107
a 984
a 861
a 738
a 615
a 492
a 369
a 173
a 249
a 371

Finally, FOR EACH loops with constant progressions are executed exactly once. Note that
if the 〈range〉 does not contain an ellipsis then all values are used, regardless of order or
constancy:

FOR EACH i IN {4, 4, 4, ..., 4} TASK 0 OUTPUTS i
a 4

FOR EACH i IN {4, 4, 4, 4, 4} TASK 0 OUTPUTS i
a 4
a 4
a 4
a 4
a 4

Timed loops

A timed loop is similar to a counted loop but instead of running for a given number of
iterations it runs for a given length of time. Timed loops are absent from all general-purpose
programming languages but can be quite useful in the context of network correctness and
performance testing. The syntax of coNCePTuaL’s timed-loop construct is “FOR 〈expr〉

Chapter 4: Grammar 83

〈time unit〉 〈simple stmt〉”. 〈time unit〉 is unit of time as listed in Section 4.6.3 [Delaying
execution], page 74 and 〈expr〉 specified the number of 〈time unit〉s for which to execute.

The following example shows how to spend three seconds sending messages from task 0
to task 1:

FOR 3 SECONDS TASK 0 SENDS A 1 MEGABYTE MESSAGE TO TASK 1

Although coNCePTuaL tries its best to run for exactly the specified length of time
there will invariably be some error in the process. Always use ‘elapsed_usecs’ (see Sec-
tion A.2 [Predeclared variables], page 127) as the indicator of actual time instead of the
time requested in the loop.

4.7.3 Binding variables

There are four ways to bind a value to a variable:
1. as part a source or target task description (see Section 4.3 [Task descriptions], page 61)
2. as part of a range loop (see Section 4.7.2 [Iterating], page 79)
3. via a command-line argument (see Section 4.8.2 [Command-line arguments], page 86)
4. explicitly using the LET keyword (this section)

The LET statement has the following form:
LET 〈let binding〉
[AND 〈let binding〉]*
WHILE 〈simple stmt〉

where 〈let binding〉 is defined as follows:
〈let binding〉 ::= 〈ident〉

BE
〈expr〉 | A RANDOM TASK [OTHER THAN 〈expr〉

| LESS THAN 〈expr〉 [BUT NOT 〈expr〉]
| GREATER THAN 〈expr〉 [BUT NOT 〈expr〉]]

Here are some examples of LET:
LET reps BE 3 WHILE FOR reps REPETITIONS TASK 0 OUTPUTS "Laissez les
bons temps rouler."

LET src BE numtasks-1 AND dest BE numtasks/2 WHILE TASK src SENDS A
55E6 BIT MESSAGE TO TASK dst

LET hotspot BE A RANDOM TASK WHILE TASKS other SUCH THAT
other<>hotspot SEND 1000 1 MEGABYTE MESSAGES TO TASK hotspot

LET target BE A RANDOM TASK OTHER THAN 3 WHILE TASK 3 SENDS A 24 BYTE
MESSAGE TO TASK target

LET x BE A RANDOM TASK AND y be a RANDOM TASK GREATER THAN x WHILE
TASK 0 OUTPUTS "Did you know that " AND x AND " is less than " AND y
AND "?"

LET nonzero BE A RANDOM TASK LESS THAN 10 BUT NOT 0 WHILE TASK nonzero

Chapter 4: Grammar 84

SLEEPS FOR 2 SECONDS

LET num BE 1000 AND num BE num*2 WHILE TASK 0 OUTPUTS num
a 2000

The last example demonstrates that LET can bind a variable to a function of its previous
value. It is important to remember, though, that variables in coNCePTuaL cannot be
assigned, only bound to a value for the duration of the current scope. They can, however,
be bound to a different value for the duration of a child scope. The following example is an
attempt to clarify the distinction between binding and assignment:

LET var BE 123 WHILE FOR 5 REPETITIONS LET var BE var+1 WHILE TASK 0
OUTPUTS var
a 124
a 124
a 124
a 124
a 124

In that example, ‘var’ is bound to ‘123’ for the scope containing the FOR statement. Then,
within the FOR statement, a new scope begins with ‘var’ being given one plus the value it
had in the outer scope, resulting in ‘124’. If coNCePTuaL supported assignment instead
of variable-binding, the program would have output ‘124’, ‘125’, ‘126’, ‘127’, and ‘128’.
Note that if A RANDOM TASK were used in the example instead of ‘var+1’, ‘var’ would get a
different value in each iteration.

When a variable is LET-bound to A RANDOM TASK, all tasks agree on the random number.
Otherwise, task A might send a message to task B but task B might be expecting to receive
the message from task C, thereby leading to a variety of problems. If there are no valid
random tasks, as in the following example, A RANDOM TASK will return ‘-1’:

LET invalid_task BE A RANDOM TASK GREATER THAN num_tasks WHILE TASK 0
OUTPUTS invalid_task
a -1

Furthermore, the 〈expr〉 passed to GREATER THAN is bounded from below by ‘0’ and the
〈expr〉 passed to LESS THAN is bounded from above by ‘num_tasks-1’. Hence, the following
coNCePTuaL statement will always output values less than or equal to ‘num_tasks-1’
(unless num_tasks is greater than 1 × 106, of course, in which case it will always output
values less than 1× 106):

LET valid_task BE A RANDOM TASK LESS THAN 1E6 WHILE TASK valid_task
OUTPUTS "Hello from " AND valid_task

4.7.4 Conditional execution

Like most programming languages, coNCePTuaL supports conditional code execution:
〈if stmt〉 ::= IF 〈rel expr〉

THEN 〈simple stmt〉
[OTHERWISE 〈simple stmt〉]

The semantics of an 〈if stmt〉 are that if 〈rel expr〉 (see Section 4.2.5 [Relational expres-
sions], page 60) is true then the first 〈simple stmt〉 is executed. If 〈rel expr〉 is false then
the second 〈simple stmt〉 is executed. One restriction is that 〈rel expr〉 must return the

Chapter 4: Grammar 85

same truth value to every task. Consequently, functions that involve task-specific random
numbers (see Section 4.2.2 [Built-in functions], page 49) are forbidden within 〈rel expr〉.

The following is an example of an 〈if stmt〉:
IF this>that THEN TASK 0 SENDS A 3 KILOBYTE MESSAGE TO TASK this
OTHERWISE TASK num_tasks-1 SENDS A 4 KILOBYTE MESSAGE TO TASK that

4.7.5 Grouping

FOR loops, LET bindings, and IF statements operate on a single 〈simple stmt〉 (or two
〈simple stmt〉s in the case of IF. . .OTHERWISE). Operating on multiple 〈simple stmt〉s—
or, more precisely, operating on a single 〈complex stmt〉 that may consist of multiple
〈simple stmt〉s—is a simple matter of placing the 〈simple stmt〉s within curly braces. Con-
trast the following:

FOR 3 REPETITIONS TASK 0 OUTPUTS "She loves me." THEN TASK 0 OUTPUTS
"She loves me not."
a She loves me.
a She loves me.
a She loves me.
a She loves me not.

FOR 3 REPETITIONS {TASK 0 OUTPUTS "She loves me." THEN TASK 0 OUTPUTS
"She loves me not."}
a She loves me.
a She loves me not.
a She loves me.
a She loves me not.
a She loves me.
a She loves me not.

In other words, everything between ‘{’ and ‘}’ is treated as if it were a single statement.
Hence, the FOR loop applies only to the “She loves me” output in the first statement above,
while the FOR loop applies to both “She loves me” and “She loves me not” in the second
statement.

Variable scoping is limited to the 〈simple stmt〉 in the body of a LET:
LET year BE 1984 WHILE LET year BE 2084 WHILE TASK 0 OUTPUTS year THEN
TASK 0 OUTPUTS year
error The second ‘year’ is outside the scope of both ‘LET’ statements.

LET year BE 1984 WHILE {{LET year BE 2084 WHILE TASK 0 OUTPUTS year}
THEN TASK 0 OUTPUTS year}
a 2084
a 1984

4.8 Header declarations

coNCePTuaL programs may contain a header section that precedes the first statement
in a coNCePTuaL program. The header section contains two types of declarations that
affect the remainder of the program: language versioning declarations and declarations of
command-line options.

Chapter 4: Grammar 86

4.8.1 Language versioning

Because the coNCePTuaL language is still under development, the programmer is fore-
warned that major changes are likely. Changes may prevent old code from compiling or,
even worse, may cause old code to produce incorrect results (e.g., if scoping or block struc-
turing are altered). To mitigate future language changes coNCePTuaL enables programs
to specify which version of the language they were written to. The syntax is straightforward:

〈version decl〉 ::= REQUIRE LANGUAGE VERSION 〈string〉

The parser issues a warning message if 〈string〉 does not exactly match the language
version supported by the compiler. If the program successfully compiles after a version-
mismatch warning, the programmer should check the output very carefully to ensure that
the program behaved as expected.

The current version of the coNCePTuaL language is ‘0.5.2a’. Note that the language
version does not necessarily correspond to the version of the coNCePTuaL toolset (see
Chapter 3 [Usage], page 11) as a whole.

4.8.2 Command-line arguments

coNCePTuaL makes it easy to declare command-line parameters, although the syntax
is a bit verbose:

〈param decl〉 ::= 〈ident〉
IS 〈string〉
AND COMES FROM 〈string〉 OR 〈string〉
WITH DEFAULT 〈number〉

〈ident〉 is the coNCePTuaL variable being declared. The first 〈string〉 is a descriptive
string that is provided when the user runs the program with --help or -h. The ‘〈string〉 OR
〈string〉’ terms list the long name for the command-line option, preceded by ‘--’, and the
short (single-character) name, preceded by ‘-’. Finally, 〈number〉 specifies the value that
will be assigned to 〈ident〉 if the command-line option is not used. Note that short names
(also long names) must be unique.

For instance, the declaration ‘nummsgs IS "Number of messages to send" AND COMES
FROM "--messages" OR "-m" WITH DEFAULT 100’ declares a new coNCePTuaL variable
called ‘nummsgs’. ‘nummsgs’ is given the value ‘100’ by default. However, if the user
running the program specifies, for example, --messages=55 (or, equivalently, -m 55), then
‘nummsgs’ will be given the value ‘55’. The following is an example of the output that
might be produced if the program is run with --help or -h:

Chapter 4: Grammar 87� �
Usage: a.out [OPTION...]

-m, --messages=<number> Number of messages to send [default: 100]
-C, --comment=<string> Additional commentary to write to the log

file, @FILE to import commentary from FILE,
or !COMMAND to import commentary from COMMAND
(may be specified repeatedly)

-L, --logfile=<string> Log file template [default: "a.out-%p.log"]
-N, --no-trap=<string> List of signals that should not be trapped

[default: ""]
-W, --watchdog=<number> Number of minutes after which to kill the job

(-1=never) [default: -1]

Help options:
-?, --help Show this help message
--usage Display brief usage message
 	
The above is only an example. Depending on what libraries were available when the

coNCePTuaL run-time system was configured, the output could be somewhat different.
Also, long options may not be supported if a suitable argument-processing library was not
available at configuration time. The above example does indicate one way that help strings
could be formatted. It also shows that the coNCePTuaL run-time system reserves some
command-line options for its own purposes. Currently, these all use uppercase letters for
their short forms so it should be safe for programs to use any lowercase letter.

4.9 Complete programs

A complete coNCePTuaL program consists of zero or more header declarations (see
Section 4.8 [Header declarations], page 85), each terminated with a ‘.’, followed by one or
more complex statements (see Section 4.7 [Complex statements], page 78), each also termi-
nated with a ‘.’. More formally, coNCePTuaL’s top-level nonterminal is the 〈program〉:
〈program〉 ::= (〈version decl〉 | 〈param decl〉 [‘.’])*

(〈top level complex stmt〉 [‘.’])+
in which a 〈top level complex stmt〉 reduces immediately to a 〈complex stmt〉. Because a
〈complex stmt〉 can reduce to a 〈simple stmt〉, the most basic, complete coNCePTuaL
program would be a 〈simple stmt〉 with a terminating period:

ALL TASKS self OUTPUT "Hello from task " AND self AND "!".

A fuller example might contain multiple header declarations and multiple 〈complex stmt〉s:
A complete coNCePTuaL program
By Scott Pakin <pakin@lanl.gov>

REQUIRE LANGUAGE VERSION "0.5.2a".

maxval IS "Maximum value to loop to" AND COMES FROM "--maxval" OR
"-v" WITH DEFAULT 100.

step IS "Increment after each iteration" AND COMES FROM "--step" OR
"-s" WITH DEFAULT 1.

Chapter 4: Grammar 88

TASK 0 OUTPUTS "Looping from 0 to " AND maxval AND " by " AND step
AND "...".

FOR EACH loopvar IN {0, step, ..., maxval}
TASK 0 OUTPUTS " " AND loopvar.

TASK 0 OUTPUTS "Wasn’t that fun?".

Technically, the ‘.’ is optional; the language is unambiguous without it. However, for
aesthetic purposes it is recommended that you terminate sentences with a period, just like
in a natural language. An exception would be when a 〈complex stmt〉 ends with a curly
brace. The ‘}.’ syntax is unappealing so a simple ‘}’ should be used instead. See Chapter 5
[Examples], page 89, for further examples.

Top-level statements and log files

The reason that coNCePTuaL distinguishes between 〈top level complex stmt〉s and
〈complex stmt〉s is that 〈top level complex stmt〉s begin a new table in the log file (see
Section 4.5.3 [Writing to a log file], page 71) while 〈complex stmt〉s add columns to the
current table. Consider the following piece of code:

TASK 0 LOGS 111 AS "First" AND
222 AS "Second".

Because ‘First’ and ‘Second’ are logged within the same 〈simple stmt〉 they appear in
the log file within the same table but as separate columns:� �
"First","Second"
"(all data)","(all data)"
111,222
 	

The same rule holds when LOGS is used repeatedly across 〈simple stmt〉s but within the
same 〈complex stmt〉:

TASK 0 LOGS 111 AS "First" THEN
TASK 0 LOGS 222 AS "Second".

However, if ‘First’ and ‘Second’ are logged from separate 〈top level complex stmt〉s,
the coNCePTuaL run-time library stores them in separate tables:

TASK 0 LOGS 111 AS "First".
TASK 0 LOGS 222 AS "Second".� �

"First"
"(all data)"
111

"Second"
"(all data)"
222
 	

Chapter 5: Examples 89

5 Examples

This chapter presents a variety of examples of complete coNCePTuaL programs. The
purpose is to put in context the grammatical elements described in Chapter 4 [Grammar],
page 46 and also to illustrate coNCePTuaL’s power and expressiveness.

5.1 Latency

One of the most common network performance benchmarks is a ping-pong latency test.
Not surprisingly, such a test is straightforward to implement in coNCePTuaL:� �
A ping-pong latency test written in coNCePTuaL

Require language version "0.5.2a".

Parse the command line.
reps is "Number of repetitions of each message size" and comes from
"--reps" or "-r" with default 1000.
maxbytes is "Maximum number of bytes to transmit" and comes from
"--maxbytes" or "-m" with default 1M.

Ensure the we have a peer with whom to communicate.
Assert that "the latency test requires at least two tasks" with

num_tasks>=2.

Perform the benchmark.
For each msgsize in {0}, {1, 2, 4, ..., maxbytes} {

for reps repetitions {
task 0 resets its counters then
task 0 sends a msgsize byte message to task 1 then
task 1 sends a msgsize byte message to task 0 then
task 0 logs the msgsize as "Bytes" and

the median of elapsed_usecs/2 as "1/2 RTT (usecs)"
} then
task 0 computes aggregates

}
 	
Note that the outer FOR loop specifies two 〈range〉s (see Section 4.7.2 [Iterating], page 79).

This is because ‘{0, 1, 2, 4, ..., maxbytes}’ is not a geometric progression. Hence, that
incorrect 〈range〉 is split into the singleton ‘{0}’ and the geometric progression ‘{1, 2,
4, ..., maxbytes}’.

5.2 Hot potato

One way to measure performance variance in a cluster is with a “hot potato” test. The
idea is that the tasks send a message in a ring pattern, then the first task logs the minimum,
mean, and variance of the per-hop latency. Ideally, the minimum should equal the mean
and these should both maintain a constant value as the number of tasks increases. Also,

Chapter 5: Examples 90

the variance should be small and constant. The following coNCePTuaL code implements
a hot-potato test.� �
Virtual ring "hot potato" test

Require language version "0.5.2a".

trials is "Number of trials to perform" and comes from "--trials" or
"-t" with default 100000.

Assert that "the hot-potato test requires at least two tasks" with
num_tasks>=2.

Let len be 0 while {
for each task_count in {2, ..., num_tasks} {

task 0 outputs "Performing " and trials and " " and
task_count and "-task runs...." then

for trials repetitions plus 5 warmup repetitions {
task 0 resets its counters then
task 0 sends a len byte message to unsuspecting task 1 then
task (n+1) mod task_count receives a len byte message from task

n such that n<task_count then
task n such that n>0 /\ n<task_count sends a len byte message

to unsuspecting task (n+1) mod task_count then
task 0 logs the task_count as "# of tasks" and

the minimum of elapsed_usecs/task_count as
"Latency (usecs)" and

the mean of elapsed_usecs/task_count as
"Latency (usecs)" and

the variance of elapsed_usecs/task_count as
"Latency (usecs)"

} then
task 0 computes aggregates

}
}
 	

All tasks receive from their left neighbor and send to their right neighbor. However, in
order to avoid a deadlock situation, task 0 sends then receives while all of the other tasks
receive then send.

5.3 Hot spot

Different systems react differently to resource contention. A hot-spot test attempts to
measure the performance degradation that occurs when a task is flooded with data. That
is, all tasks except 0 concurrently send a batch of messages to task 0. Task 0 reports the
incoming bandwidth, i.e., the number of bytes it received divided by the time it took to
receive that many bytes. The two independent variables are the message size and the
number of tasks.

Chapter 5: Examples 91� �
Hot-spot bandwidth

Require language version "0.5.2a".

maxbytes is "Maximum message size in bytes" and comes from
"--maxbytes" or "-x" with default 1024.

numtrials is "Number of bursts of each size" and comes from "--trials"
or "-t" with default 100.

burst is "Number of messages in each burst" and comes from
"--burstsize" or "-b" with default 1000.

Assert that "the hot-spot test requires at least two tasks" with
num_tasks>=2.

For each maxtask in {2, ..., num_tasks}
for each msgsize in {1, 2, 4, ..., maxbytes} {

task 0 outputs "Performing " and numtrials and " " and
maxtask and "-task trials with " and
msgsize and "-byte messages" then

for numtrials repetitions plus 3 warmup repetitions {
task 0 resets its counters then
task sender such that sender>0 /\ sender<maxtask asynchronously

sends burst msgsize byte messages to task 0 then
all tasks await completion then
task 0 logs the maxtask as "Tasks" and

the msgsize as "Message size (B)" and
the mean of (1E6*bytes_received)/(1M*elapsed_usecs)
as "Incoming BW (MB/s)"

} then
task 0 computes aggregates

}
 	

5.4 Multicast trees

It may be worth comparing the performance of a native multicast operation to the
performance achieved by multicasting over a k-nomial tree to gauge how well the underlying
communication layer implements multicasts. The following code records a wealth of data,
varying the tree arity (i.e., k), the number of tasks receiving the multicast, and the message
size. It provides a good demonstration of how to use the KNOMIAL_CHILDREN and KNOMIAL_
CHILD functions.

Chapter 5: Examples 92� �
Test the performance of multicasting over various k-nomial trees
By Scott Pakin <pakin@lanl.gov>

Require language version "0.5.2a".

Parse the command line.
minsize is "Min. message size (bytes)" and comes from "--minbytes" or "-n"

with default 1.
maxsize is "Max. message size (bytes)" and comes from "--maxbytes" or "-x"

with default 1M.
reps is "Repetitions to perform" and comes from "--reps" or "-r" with

default 100.
maxarity is "Max. arity of the tree" and comes from "--maxarity" or "-a"

with default 2.

Assert that "this program requires at least two processors" with
num_tasks>=2.

Send messages from task 0 to 1, 2, 3, ... other tasks in a k-nomial tree.
For each arity in {2, ..., maxarity} {

for each num_targets in {1, ..., num_tasks-1} {
for each msgsize in {minsize, minsize*2, minsize*4, ..., maxsize} {

task 0 outputs "Multicasting a " and msgsize and "-byte message to "
and num_targets and " target(s) over a " and arity and
"-nomial tree ..." then

for reps repetitions {
task 0 resets its counters then
for each src in {0, ..., num_tasks}
for each dstnum in {0, ..., knomial_children(src, arity,

num_targets+1)}
task src sends a msgsize byte message to task
knomial_child(src, dstnum, arity) then

all tasks synchronize then
task 0 logs the arity as "k-nomial arity" and

the num_targets as "# of recipients" and
the msgsize as "Message size (bytes)" and
the median of (1E6/1M)*(msgsize/elapsed_usecs) as

"Incoming bandwidth (MB/s)" and
the median of (num_targets*msgsize/elapsed_usecs)*

(1E6/1M) as "Outgoing bandwidth (MB/s)"
} then
task 0 computes aggregates

}
}

}
 	

Chapter 6: Implementation 93

6 Implementation

coNCePTuaL could have been implemented as a benchmarking library instead of as
a special-purpose language. In addition to improved readability and the practicality of in-
cluding entire source programs in every log file, one advantage of the language approach is
that the same coNCePTuaL source code can be used to compare the performance of mul-
tiple communication libraries. A compiler command-line option selects a particular backend
module to use to generate code. Each backend outputs code for a different combination of
low-level language and communication library.

The coNCePTuaL compiler is structured into a pipeline of modules. Thus, the backend
can be replaced without altering the front end, lexer, or parser modules. coNCePTuaL
ensures consistency across backends by providing a run-time library that generated code can
link to. The run-time library encapsulates many of the mundane tasks a network correctness
or performance test needs to perform.

6.1 Overview

Compiler

The coNCePTuaL compiler is written in Python and is based on the SPARK (Scan-
ning, Parsing, And Rewriting Kit) compiler framework. Compiler execution follows a basic
pipeline structure. Compilation starts with the top-level file (‘ncptl.py’), which processes
the command line then transfers control to the lexer (‘ncptl_lexer.py’). The lexer inputs
coNCePTuaL source code and outputs a stream of tokens (‘token.py’). Next, the parser
(‘ncptl_parser.py’) finds structure in those tokens based on coNCePTuaL’s grammat-
ical rules and outputs an abstract syntax tree (‘ast.py’). Finally, the code generator (
‘codegen_language_library.py’) that was designated on the command line walks the ab-
stract syntax tree, converting it to code in the target language and for the target commu-
nication library.

Run-time library

coNCePTuaL makes a large run-time library (‘runtimelib.c’) available to generated
programs. The coNCePTuaL run-time library, which is written in C, provides consistent
functionality across target languages and communication layers as well as across hardware
architectures and operating systems. The library also simplifies code generation by im-
plementing functions for such tasks as memory allocation, queue management, and data
logging. The functions in this library are described in Section 6.3 [Run-time library func-
tions], page 102.

Build process

coNCePTuaL is built using the GNU Autotools (Autoconf, Automake, and Libtool).
Consequently, changes should be made to original files, not generated files. Specifically,
‘configure.ac’ and ‘acinclude.m4’ should be edited in place of ‘configure’; ‘ncptl.h.in’
should be edited in place of ‘ncptl.h’; and, the various ‘Makefile.am’ files should be edited

Chapter 6: Implementation 94

in place of the corresponding ‘Makefile’s. See the Autoconf documentation, the Automake
documentation, and the Libtool documentation for information about how these various
tools operate.

If ‘configure’ is given the --enable-maintainer-mode option, make will automatically
re-run aclocal, autoheader, automake, autoconf, and/or ./configure as needed. Devel-
opers who plan to modify any of the “maintainer” files (‘acinclude.m4’, ‘configure.ac’,
and the various ‘Makefile.am’ files) are strongly encouraged to configure coNCePTuaL
with --enable-maintainer-mode in order to ensure that the build process is kept current
with any changes.

6.2 Backend creation

The coNCePTuaL compiler’s backend generates code from an abstract syntax tree
(AST). The compiler was designed to support a variety of code generators, each targeting
a particular programming language and communication library. There are two ways to
create a new coNCePTuaL backend. Either a ‘codegen_language_library.py’ backend
supporting an arbitrary language and communication library can be written from scratch or
a C-based ‘codegen_c_library.py’ backend can be derived from ‘codegen_c_generic.py’.

In the former case, the backend must derive a NCPTL_CodeGen class from SPARK’s
GenericASTTraversal class. NCPTL_CodeGen class must contain a generate method with
the following signature:� �
def generate(self, ast, filesource=’<stdin>’, sourcecode=None):
 	
That is, generate takes as arguments a class object, the root of an abstract-syntax tree
(as defined in ‘ast.py’), the name of the input file containing coNCePTuaL code (to be
used for outputting error messages), and the complete coNCePTuaL source code (which
is both stored in header comments and passed to the run-time library). generate should
invoke self.postorder to traverse the AST in a post-order fashion, calling various code-
generating methods as it proceeds. The NCPTL_CodeGen must implement all of the methods
listed in Section B.1 [Method calls], page 129, each of which corresponds to some component
of the coNCePTuaL grammar. Each method takes a “self” class object an a node of the
AST (of type AST).

The compiler front-end, ‘ncptl’, invokes the following two methods, which must be
defined by the backend’s NCPTL_CodeGen class:� �
def compile_only(self, progfilename, codelines, outfilename,

verbose, keepints):
 	� �
def compile_and_link(self, progfilename, codelines, outfilename,

verbose, keepints):
 	
The compile_only method compiles the backend-specific code into an object file. The
compile_and_link method compiles the backend-specific code into an object file and links

Chapter 6: Implementation 95

it into an executable file. For some backends, the notions of “compile” and “link” may
not be appropriate. In that situation, the backend should perform the closest meaningful
operations. For example, the dot backend (see Section 3.2.6 [The dot backend], page 19)
compiles to a ‘.dot’ file and links into the target graphics format (‘.ps’ by default).

For both the compile_only and compile_and_link methods, progfilename is the
name of the coNCePTuaL input file specified on the ‘ncptl’ command line or the string
‘<command line>’ if a program was specified literally with --program. codelines is the
output from the generate method, i.e., a list of lines of backend-specific code. outfilename
is the name of the target file specified on the ‘ncptl’ command line with --output or the
string ‘-’ if --output was not used. If verbose is ‘1’, the method should write each op-
eration it plans to perform to the standard-error device. For consistency, comment lines
should begin with ‘#’; shell commands should be output verbatim. If verbose is ‘0’, cor-
responding to the ‘ncptl’ --quiet option, the method should output nothing but error
messages. Finally, keepints corresponds to the --keep-ints option to ‘ncptl’. If equal
to ‘0’, all intermediate files should be deleted before returning; if equal to ‘1’, intermediate
files should be preserved. See Section 3.1 [Compiling coNCePTuaL programs], page 11, for
a description of the various command-line options to ‘ncptl’.

As long as NCPTL_CodeGen implements all of the required functions it is free to generate
code in any way that it sees fit. However, Section B.1 [Method calls], page 129, lists a large
number of methods, many of which will be identical across multiple code generators for the
same language but different communication libraries. To simplify a common case, C plus
some messaging library, coNCePTuaL provides ‘codegen_c_generic.py’, to which the
remainder of the Implementation chapter is devoted to explaining.

6.2.1 Hook methods

Multiple code generators for the same language but different communication libraries are
apt to contain much code in common. Because C is a popular language, coNCePTuaL
provides a ‘codegen_c_generic.py’ module which implements a virtual NCPTL_CodeGen
base class. This base class implements all of the methods listed in Section B.1 [Method
calls], page 129. However, rather than support a particular communication library, the
‘codegen_c_generic.py’ implementation of NCPTL_CodeGen merely provides a number of
calls to “hook” methods—placeholders that implement library-specific functionality. See
Section B.2 [C hooks], page 131, for a list of all of the hooks that ‘codegen_c_generic.py’
defines. For clarity, hooks are named after the method from which they’re called but with an
all-uppercase tag appended. Hook methods take a single parameter, a read-only dictionary
(the result of invoking Python’s locals() function) of all of the local variables in the caller’s
scope. They return C code in the form of a list with one line of C per element. A hook
method is invoked only if it exists, which gives the backend developer some flexibility in
selecting places at which to insert code. Of course, for coarser-grained control, a backend
developer can override complete methods in ‘codegen_c_generic.py’ if desired. Generally,
this will not be necessary as hook invocations are scattered liberally throughout the file.

An example

‘codegen_c_generic.py’ defines a method named code_specify_include_
files. (‘codegen_c_generic.py’ names all of its code-generating helper methods

Chapter 6: Implementation 96

‘code_something ’.) code_specify_include_files pushes a sequence of #include
directives onto a queue of lines of C code. The method is shown below in its entirety:� �
def code_specify_include_files(self, node):

"Load all of the C header files the generated code may need."

Output a section comment.
self.pushmany([

"/*****************",
" * Include files *",
" *****************/",
""])

Enable hooks both before and after the common includes.
self.pushmany(self.invoke_hook("code_specify_include_files_PRE",

locals(),
before=[

"/* Header files specific to the %s backend */" %
self.backend_name],

after=[""]))
self.pushmany([

"/* Header files needed by all C-based backends */",
"#include <stdio.h>",
"#include <string.h>",
"#include <ncptl/ncptl.h>"])

self.pushmany(self.invoke_hook("code_specify_include_files_POST",
locals(),
before=[

"",
"/* Header files specific to the %s backend */" %
self.backend_name]))
 	

code_specify_include_files uses the pushmany method (see Section 6.2.4 [Internals],
page 100) to push each element in a list of lines of C code onto the output queue. It starts
by pushing a section comment—‘codegen_c_generic.py’ outputs fully commented C code.
Next, it invokes the code_specify_include_files_PRE hook if it exists and pushes that
method’s return value onto the queue. Then, it pushes all of the #includes needed by the
generated C code. Finally, it invokes the code_specify_include_files_POST hook if it
exists and pushes that method’s return value onto the queue.

A backend that requires additional header files from those included by code_specify_
include_files need only define code_specify_include_files_PRE to add extra header
files before the standard ones or code_specify_include_files_POST to add extra header
files after them. The following is a sample (hypothetical) hook definition:

Chapter 6: Implementation 97� �
def code_specify_include_files_POST(self, localvars):

"Specify extra header files needed by the c_pthreads backend."
return [

"#include <errno.h>",
"#include <pthread.h>"]
 	

Although the top-level structure of ‘codegen_c_generic.py’ is described in
Section 6.2.4 [Internals], page 100, a backend developer will normally need to study the
‘codegen_c_generic.py’ source code to discern the purpose of each hook method and its
relation to the surrounding code.

6.2.2 A minimal C-based backend

A backend derived from ‘codegen_c_generic.py’ starts by defining an NCPTL_CodeGen
child class that inherits much of its functionality from the parent NCPTL_CodeGen class.
There are only two items that a C-based backend must define: backend_name, the name of
the backend in the form ‘c_library ’; and, backend_desc, a brief phrase describing the back-
end. (These are used for error messages and file comments.) Also, a backend’s __init__
method must accept an options parameter, which is given a list of command-line param-
eters not recognized by ‘ncptl.py’. After NCPTL_CodeGen’s __init__ method processes
the entries in options that it recognizes, it should pass the remaining options to its parent
class’s __init__ method for further processing. (For proper initialization, the parent class’s
__init__ method must be called, even if there are no remaining options to process.)

The following is the complete source code to a minimal coNCePTuaL backend. This
backend, ‘codegen_c_seq.py’, supports only sequential coNCePTuaL programs (e.g.,
‘TASK 0 OUTPUTS "Hello, world!"’); any attempt to use communication statements (see
Section 4.4 [Communication statements], page 63) will result in a compile-time error.� �
#! /usr/bin/env python

###
Code generation module for the coNCePTuaL language:
Minimal C-based backend -- all communication
operations result in a compiler error
#
By Scott Pakin <pakin@lanl.gov>
###

import codegen_c_generic

class NCPTL_CodeGen(codegen_c_generic.NCPTL_CodeGen):
def __init__(self, options):

"Initialize the sequential C code generation module."
self.backend_name = "c_seq"
self.backend_desc = "C, sequential code only"
codegen_c_generic.NCPTL_CodeGen.__init__(self, options)
 	

The c_seq backend can be used like any other:

Chapter 6: Implementation 98� �
ncptl --backend=c_seq \

--program=’For each i in {10, ..., 1} task 0 outputs i.’ | \
indent > myprogram.c
 	

(‘codegen_c_generic.py’ outputs unindented code, deferring attractive formatting to the
Unix ‘indent’ utility.)

One sequential construct the c_seq backend does not support is randomness, as needed
byA RANDOM PROCESSOR (see Section 4.6.5 [Reordering task IDs], page 76) and A RANDOM
TASK (see Section 4.7.3 [Binding variables], page 83). ‘codegen_c_generic.py’ cannot
support randomness itself because doing so requires broadcasting the seed for the random-
number generator to all tasks. Broadcasting requires messaging-layer support, which a de-
rived backend provides through the code_def_init_reseed_BCAST hook (see Section 6.2.1
[Hook methods], page 95). For the sequential backend presented above, a broadcast can be
implemented as a no-op:� �
def code_def_init_reseed_BCAST(self, localvars):

’"Broadcast" a random-number seed to all tasks.’
return []
 	

In fact, that same do-nothing hook method is used by the c_udgram backend. c_udgram
seeds the random-number generator before calling fork(), thereby ensuring that all tasks
have the same seed without requiring an explicit broadcast.

6.2.3 Generated code

‘codegen_c_generic.py’ generates thoroughly commented C code. However, the overall
structure of the generated code may be somewhat unintuitive, as it does not resemble the
code that a human would write to accomplish a similar task. The basic idea behind the
generated C code is that it expands the entire program into a list of “events”, then starts
the clock, then executes all of the events in a single loop. Regardless of the coNCePTuaL
program being compiled, the body of the generated C code will look like this:� �
for (i=0; i<numevents; i++) {

CONC_EVENT *thisev = &eventlist[i];

switch (thisev->type) {
case event 1:

...
case event 2:

...
}

}
 	
Programs generated by ‘codegen_c_generic.py’ define the following event types:

EV_SEND Synchronous send

EV_ASEND Asynchronous send

Chapter 6: Implementation 99

EV_RECV Synchronous receive

EV_ARECV Asynchronous receive

EV_WAIT Wait for all asynchronous sends/receives to complete

EV_DELAY Spin or sleep

EV_TOUCH Touch a region of memory

EV_SYNC Barrier synchronization

EV_RESET Reset counters

EV_FLUSH Compute aggregate functions for log-file columns

EV_MCAST Synchronous multicast

EV_BTIME Beginning of a timed loop

EV_ETIME Ending of a timed loop

EV_REPEAT
Repeatedly process the next N events

EV_SUPPRESS
Suppress writing to the log and standard output

EV_NEWSTMT
Beginning of a new top-level statement

EV_CODE None of the above

The EV_CODE event is used, for example, by the BACKEND EXECUTES (see Section 4.6.6
[Injecting arbitrary code], page 77), LOGS (see Section 4.5.3 [Writing to a log file], page 71),
and OUTPUTS (see Section 4.5.2 [Writing to standard output], page 71) statements. Note that
there are no loop events—in fact, there are no complex statements (see Section 4.7 [Complex
statements], page 78) whatsoever. Complex statements are expanded into multiple simple
statements at initialization time.

The advantage of completely expanding a coNCePTuaL program during the initial-
ization phase—essentially, “pre-executing” the entire program—is that that enables all of
the expensive, non-communication-related setup to be hoisted out of the timing loop, which
is how a human would normally express a network benchmark. Pre-execution is possible
because the coNCePTuaL language is not a Turing machine; infinite loops are not express-
ible by the language and message contents and timings cannot affect program behavior, for
instance. During its initialization phase, the generated C code allocates memory for message
buffers, evaluates numerical expressions, verifies program assertions, unrolls loops, and does
everything else that’s not directly relevant to communication performance. For instance,
the coNCePTuaL program ‘TASK tx SUCH THAT tx>4 SENDS 10 1 MEGABYTE MESSAGES TO
TASK tx/2’ would cause each task to perform the following steps during initialization:
• determine if its task ID is greater than 4, making the task a sender
• determine if its task ID is equal to ‘tx/4’ (rounded down to the nearest integer) for

some task ‘tx’ in the program, making the task a receiver
• allocate 1 MB for a message buffer

Chapter 6: Implementation 100

• allocate and initialize a repeat event, specifying that the subsequent event should repeat
10 times

• allocate a send or receive event

The final two of those steps repeat as necessary. For example, task 3 receives 10 messages
from each of task 6 and task 7.

Note that each task’s receive events (if any) are allocated before its send events (if any),
as described Section 4.4.2 [Sending], page 67. Also, note that only a single message buffer
is allocated because the coNCePTuaL source did not specify the UNIQUE keyword (see
Section 4.4.1 [Message specifications], page 63).

An event is implemented as a C struct that contains all of the state needed to perform
a particular operation. For example, an event corresponding to a synchronous or asyn-
chronous send operation (CONC_SEND_EVENT) stores the destination task ID, the number of
bytes to send, the message alignment, the number of outstanding asynchronous sends and
receives, a flag indicating whether the data is to be touched, and a flag indicating that the
message should be filled with data the receiver can verify. In addition, the code_declare_
datatypes_SEND_STATE hook (see Section 6.2.1 [Hook methods], page 95) enables a backend
to include additional, backend-specific state in the (CONC_SEND_EVENT) data structure.

6.2.4 Internals

‘codegen_c_generic.py’ is a fairly substantial piece of code. It is divided into ten
sections:
1. methods exported to the compiler front end
2. utility functions that do not generate code
3. utility functions that do generate code
4. methods for outputting language atoms (see Section 4.1 [Primitives], page 46)
5. methods for outputting miscellaneous language constructs (e.g., restricted identifiers;

see Section 4.3.1 [Restricted identifiers], page 61)
6. methods for outputting expressions (see Section 4.2 [Expressions], page 47)
7. methods for outputting complete programs (see Section 4.9 [Complete programs],

page 87)
8. methods for outputting complex statements (see Section 4.7 [Complex statements],

page 78)
9. methods for outputting simple statements (e.g., communication statements; see Sec-

tion 4.4 [Communication statements], page 63)
10. methods for outputting nodes with non-textual names (e.g., ‘...’ and various opera-

tors)

The NCPTL_CodeGen class defined in ‘codegen_c_generic.py’ generates code as follows.
The generate method, which is invoked by ‘ncptl.py’, calls upon SPARK to process
the abstract-syntax tree (AST) in postorder fashion. NCPTL_CodeGen maintains a stack
(codestack) on which code fragments are pushed and popped but that ends up containing a
complete line of C code in each element. For example, in the coNCePTuaL program ‘TASK
0 OUTPUTS 1+2*3’, the n_outputs method will pop ‘[(’expr’, ’(1)+((2)*(3))’)]’ (a list

Chapter 6: Implementation 101

containing the single expression ‘1+2*3’) and ‘(’task_expr’, ’0’)’ (a tuple designating a
task by the expression ‘0’) and push multiple lines of code that prepare task 0 to evaluate
and output the given expression.

The utility functions are the most useful for backend developers to understand, as they
are frequently called from hook methods (see Section 6.2.1 [Hook methods], page 95). The
following should be of particular importance:

push
pushmany Push a single value (typically a string of C code) or each value in a list of values

onto a stack.

error_fatal
error_internal

Output a generic error message or an “internal error” error message and abort
the program.

code_declare_var
Push (using the push method) a line of C code that declares a variable with
an optionally specified type, name, initial value, and comment. Return the
variable name actually used.

See the definitions in ‘codegen_c_generic.py’ of each of the above to determine required
and optional parameters. The following, adapted from ‘codegen_c_udgram.py’ demon-
strates some of the preceding methods:� �
def n_for_count_SYNC_ALL(self, localvars):

"Synchronize all of the tasks in the job."
synccode = []
self.push("{", synccode)
loopvar = self.code_declare_var(suffix="task",

comment="Loop variable that iterates over all (physical) ranks",
stack=synccode)

self.pushmany([
"thisev_sync->s.sync.peerqueue = ncptl_queue_init (sizeof(int));",
"for (%s=0; %s<var_num_tasks; %s++)" %
(loopvar, loopvar, loopvar),
"*(int *)ncptl_queue_allocate(thisev_sync->s.sync.peerqueue) = %s;" %
loopvar,
"thisev_sync->s.sync.syncrank = physrank;",
"}"],

stack=synccode)
return synccode
 	

That definition of the n_for_count_SYNC_ALL hook method defines a new stack
(synccode) and pushes a ‘{’ onto it. It then declares a loop variable, letting
code_declare_var select a name but dictating that it end in ‘_task’. The hook method
then pushes some additional C code onto the synccode stack and finally returns the stack
(which is really just a list of lines of C code).

Some useful variables defined by NCPTL_CodeGen include the following:

Chapter 6: Implementation 102

base_global_parameters
a list of 6-ary tuples defining extra command-line parameters to parse (format:
{type, variable, long name, short name, description, default value})

events_used
a dictionary containing the names of events actually used by the program being
compiled

Some methods in ‘codegen_c_generic.py’ that are worth understanding but are un-
likely to be used directly in a derived backend include the following:

pop Pop a value from a stack.

push_marker
Push a specially designated “marker” value onto a stack.

combine_to_marker
Pop all items off a stack up to the first marker value found; discard the marker;
then, push the popped items as a single list of items. This is used, for example,
by a complex statement (see Section 4.7 [Complex statements], page 78) that
applies to a list of statements, which can be popped as a unit using combine_
to_marker.

invoke_hook
Call a hook method, specifying code to be pushed before/after the
hook-produced code and alternative text (or Python code) to be pushed (or
executed) in the case that a hook method is not provided.

6.3 Run-time library functions

To simplify the backend developer’s task and to provide consistent functionality across
backends, coNCePTuaL provides a run-time library that encapsulates many of the com-
mon operations needed for network-correctness and performance-testing programs. This
section describes all of the functions that the library exports (plus a few important types
and variables). The library is written in C, so all of the type/variable/function prototypes
are expressed with C syntax. The library includes, among others, functions that manage
heap-allocated memory, accurately read the time, write results to log files, control queues of
arbitrary data, and implement various arithmetic operations. All of these functions should
be considered “slow” and should therefore generally not be invoked while execution is being
timed.1

6.3.1 Variables and data types

The following variables and data types are used by various run-time library functions
and directly by backends.

1 Some notable exceptions are the functions described in Section 6.3.5 [Message-buffer manipulation
functions], page 106, which implement coNCePTuaL’s WITH DATA TOUCHING and WITH VERIFICATION

constructs.

Chapter 6: Implementation 103

Data typencptl int
The internal data type of the coNCePTuaL run-time library is ncptl_int. This
is normally a 64-bit signed integer type selected automatically by ‘configure’ (see
Section 2.1 [configure], page 4) but can be overridden with the --with-datatype

option to ‘configure’. ‘ncptl.h’ defines a string macro called NICS that can be used
to output an ncptl_int regardless of how the ncptl_int type is declared:� �
ncptl_fatal ("My variable contains a negative value (%" NICS ")",

my_ncptl_int_var);
 	
ncptl_int constants declared by backends derived from ‘codegen_c_generic.py’ are
given an explicit suffix which defaults to ‘LL’ but can be overridden at configuration
time using the --with-const-suffix option.

Data typeNCPTL CMDLINE
The NCPTL_CMDLINE structure describes an acceptable command-line option. It con-
tains a type, which is either NCPTL_TYPE_INT for an ncptl_int or NCPTL_TYPE_
STRING for a char *, a pointer to a variable that will receive the value specified on
the command line, the long name of the argument (without the ‘--’), the one-letter
short name of the argument (without the ‘-’), a textual description of what the ar-
gument represents, and a default value to use if the option is not specified on the
command line.

Data typeNCPTL QUEUE
An NCPTL_QUEUE is an opaque data type that represents a dynamically growing queue
that can be flattened to an array for more convenient access. NCPTL_QUEUEs have
proved to be quite useful when implementing coNCePTuaL backends.

Data typeNCPTL LOG FILE STATE
Every coNCePTuaL log file is backed by a unique NCPTL_LOG_FILE_STATE opaque
data type. An NCPTL_LOG_FILE_STATE data type represents all of the state needed
to maintain that file, such as file descriptors, header comments, and data which has
not yet been aggregated.

Variableint ncptl pagesize
This variable is initialized by ncptl_init() to the number of bytes in an operating-
system memory page. ncptl_pagesize can be used by backends to implement coN-
CePTuaL’s PAGE SIZED and PAGE ALIGNED keywords (see Section 4.4.1 [Message
specifications], page 63).

6.3.2 Miscellaneous functions

The following functions do not fit neatly into any of the remaining categories.

Functionvoid ncptl fatal (char *format, ...)
Output an error message and abort the program. ncptl_fatal() takes the same
types of arguments as C’s printf() routine.

Chapter 6: Implementation 104

Functionvoid ncptl touch memory (void *buffer, ncptl_int numbytes,
ncptl_int bytestride, ncptl_int accesses, ncptl_int wordsize)

Walk a memory region of a given size with a given stride (or ‘-1’ for random)
for a given number of accesses and using a given access size. For example,
‘ncptl_touch_memory (mybuffer, 1048576, 4096, 10000, 64)’ will read (and do
nothing with) the first 64 bytes of a 1MB memory region, then the 64 bytes starting
at offset 4096, then the 64 bytes starting at 4096 × 2, then at 4096 × 3, then at
4096 × 4, and so forth up to 4096 × 10000, wrapping around the 1MB region as
necessary. ncptl_touch_memory() is intended to to be used to implement the
TOUCHES statement (see Section 4.6.4 [Touching memory], page 75).

Functionncptl_int ncptl assign processor (ncptl_int virtID, ncptl_int
physID, ncptl_int *virt2phys, ncptl_int numtasks, ncptl_int physrank)

Assign a (physical) processor ID, physID, to a (virtual) task ID, virtID given a virtual-
to-physical mapping table, virt2phys, and its length, numtasks. Return a new task ID
for our processor given its processor number, physrank. ncptl_assign_processor()
is intended to implement the IS ASSIGNED TO construct (see Section 4.6.5 [Reordering
task IDs], page 76).

6.3.3 Initialization functions

The following functions are intended to be called fairly early in the generated code.

Functionvoid ncptl init (int version, char *program name)
Initialize the coNCePTuaL run-time library. version is used to verify that
‘runtimelib.c’ corresponds to the version of ‘ncptl.h’ used by the generated code.
The caller must pass in NCPTL_RUN_TIME_VERSION for version. program name is the
name of the executable program and is used for outputting error messages. The
caller should pass in argv[0] for program name. ncptl_init() must be the first
library function called by the generated code (with a few exceptions, as indicated
below).

Functionvoid ncptl permit signal (int signalnum)
Indicate that the backend relies on signal signalnum for correct operation. Because
signal handling has performance implications, the coNCePTuaL run-time library
normally terminates the program upon receiving a signal. Hence, the user can be
assured that if a program runs to completion then no signals have affected its perfor-
mance. See Section 3.3 [Running coNCePTuaL programs], page 21, for a description
of the --no-trap command-line option, which enables a user to permit additional
signals to be delivered to the program (e.g., when linking with a particular implemen-
tation of a communication library that relies on signals). ncptl_permit_signal()
must be invoked before ncptl_parse_command_line() to have any effect.

Functionvoid ncptl parse command line (int argc, char *argv [],
NCPTL_CMDLINE *arglist, int numargs)

Parse the command line. argc and argv should be the argument count and argument
vector passed to the generated code by the operating system. arglist is a list of

Chapter 6: Implementation 105

descriptions of acceptable command-line arguments and numargs is the length of
that list.

Because ncptl_init() takes many seconds to run, it is common for generated code to
scan the command line for --help or -? and, if found, skip ncptl_init() and immedi-
ately invoke ncptl_parse_command_line(). Doing so gives the user immediate feedback
when requesting program usage information. Skipping ncptl_init() is safe in this con-
text because ncptl_parse_command_line() terminates the program after displaying usage
information; it does not require any information discovered by ncptl_init().

Most generated programs have a --seed/-S option that enables the user to specify
explicitly a seed for the random-number generator with --help/-? showing the default
seed. ncptl_seed_random_task() must therefore be called before ncptl_parse_command_
line() which, as stated in the previous paragraph, can be invoked without a prior invoca-
tion of ncptl_init(). Consequently, it can be considered safe also to invoke ncptl_seed_
random_task() before ncptl_init().

A generated program’s initialization routine will generally exhibit a structure based on
the following pseudocode:

if “--help” or “-?” in command-line options then
only help := true

else
only help := false
ncptl_init(...)

end if
random seed := ncptl_seed_random_task(0)
ncptl_parse_command_line(...)
if only help = true then
ncptl_error("Internal error; should have exited")

end if
ncptl_seed_random_task(random seed)

6.3.4 Memory-allocation functions

The coNCePTuaL run-time library provides its own wrappers for malloc(), free(),
realloc(), and strdup() as well as a specialized malloc() designed specifically for al-
locating message buffers. The wrappers’ “value added” is that they support the explicit
data alignments needed by ALIGNED messages (see Section 4.4.1 [Message specifications],
page 63) and that they automatically call ncptl_fatal() on failure, so the return value
does not need to be checked for NULL.

Functionvoid * ncptl malloc (ncptl_int numbytes, ncptl_int alignment)
Allocate numbytes bytes of memory aligned to an alignment-byte boundary. If align-
ment is ‘0’, ncptl_malloc() will use whatever alignment is “natural” for the underly-
ing architecture. ncptl_malloc() will automatically call ncptl_fatal() if memory
allocation fails. Therefore, unlike malloc(), there is no need to check the return value
for NULL.

Chapter 6: Implementation 106

Functionvoid ncptl free (void *pointer)
Free memory previously allocated by ncptl_malloc(). It is an error to pass ncptl_
free() memory not allocated by ncptl_malloc().

Functionvoid * ncptl realloc (void *pointer, ncptl_int numbytes,
ncptl_int alignment)

Given a pointer returned by ncptl_malloc(), change its size to numbytes and byte-
alignment to alignment without altering the contents (except for truncation in the case
of a smaller target size). If alignment is ‘0’, ncptl_realloc() will use whatever align-
ment is “natural” for the underlying architecture. ncptl_realloc() will automat-
ically call ncptl_fatal() if memory allocation fails. Therefore, unlike realloc(),
there is no need to check the return value for NULL.

Functionchar * ncptl strdup (const char *string)
ncptl_strdup() copies a string as does the standard C strdup() function. However,
ncptl_strdup() uses ncptl_malloc() instead of malloc() to allocate memory for
the copy, which must therefore be deallocated using ncptl_free().

Functionvoid * ncptl malloc message (ncptl_int numbytes, ncptl_int
alignment, ncptl_int outstanding)

Allocate numbytes bytes of memory from the heap aligned on an alignment-byte
boundary. All calls with the same value of outstanding will share a buffer. ncptl_
malloc_message() is intended to be used in two passes. The first time the function
is called on a set of messages it merely determines how much memory to allocate.
The second time, it returns valid memory buffers. Note that the returned pointer can
be neither free()d nor ncptl_free()d.

6.3.5 Message-buffer manipulation functions

The coNCePTuaL language facilitates verifying message contents and touching every
word in a message (see Section 4.4.1 [Message specifications], page 63). The following
functions implement those features.

Functionvoid ncptl fill buffer (void *buffer, ncptl_int numbytes, int
validity)

Fill a region of memory with known values. If validity is ‘+1’, ncptl_fill_buffer()
will fill the first numbytes bytes of buffer with a verifiable sequence of integers (see Sec-
tion 4.4.1 [Message specifications], page 63). If validity is ‘-1’, ncptl_fill_buffer()
will pollute the first numbytes bytes of buffer. Receive buffers should be polluted
before reception to avoid false negatives caused, for example, by an inadvertently
dropped message destined for a previously validated buffer.

Functionncptl_int ncptl verify (void *buffer, ncptl_int numbytes)
Verify the contents of memory filled by ncptl_fill_buffer(). The function returns
the number of erroneous bits. ncptl_verify() is used to implement coNCePTuaL’s
WITH VERIFICATION construct (see Section 4.4.1 [Message specifications], page 63).

Chapter 6: Implementation 107

Functionvoid ncptl touch data (void *buffer, ncptl_int numbytes)
Touch every byte in a given buffer. ncptl_touch_data() is used to implement the
WITH DATA TOUCHING construct described in Section 4.4.1 [Message specifications],
page 63.

6.3.6 Time-related functions

An essential component of any benchmarking system is an accurate timer. coNCeP-
TuaL’s ncptl_time() function selects from a variety of timers at configuration time, first
favoring lower-overhead cycle-accurate timers, then higher-overhead cycle-accurate, and fi-
nally non-cycle-accurate timers. ncptl_init() measures the actual timer overhead and
resolution and ncptl_log_write_header() writes this information to the log file. Further-
more, the ‘validatetimer’ program (see Section 2.2 [make], page 5) can be used to verify
that the timer used by ncptl_init() truly does correspond to wall-clock time.

The coNCePTuaL language provides a few time-related functions. These are also
supported by the functions described below.

Functionuint64_t ncptl time (void)
Return the time in microseconds. The timer ticks even when the program is not
currently scheduled. No assumptions can be made about the relation of the value re-
turned to the time of day; ncptl_time() is intended to be used strictly for computing
elapsed time. The timer’s resolution and accuracy are logged to the log file by ncptl_
log_write_header() (more precisely, by the internal log_write_header_timer()
function, which is called by ncptl_log_write_header()). Note that ncptl_time()
always returns a 64-bit unsigned value, regardless of how ncptl_int is declared.

Functionvoid ncptl set flag after usecs (volatile int *flag, uint64_t
delay)

ncptl_set_flag_after_usecs() uses the operating system’s interval timer to asyn-
chronously set a variable to ‘1’ after a given number of microseconds. This function is
intended to be used to support the ‘FOR time’ construct (see Section 4.7.2 [Iterating],
page 79). Note that delay is a 64-bit unsigned value, regardless of how ncptl_int is
declared.

Functionvoid ncptl udelay (uint64_t delay, int spin0block1)
If spin0block1 is ‘0’, ncptl_udelay() spins for delay microseconds (i.e., using the
CPU). If spin0block1 is ‘1’, ncptl_udelay() sleeps for delay microseconds (i.e., re-
linquishing the CPU). Note that delay is a 64-bit unsigned value, regardless of how
ncptl_int is declared. ncptl_udelay() is intended to be used to support the coN-
CePTuaL language’s SLEEPS and COMPUTES statements (see Section 4.6.3 [Delaying
execution], page 74).

6.3.7 Log-file functions

Benchmarking has limited value without a proper record of the performance results.
The coNCePTuaL run-time library provides functions for writing data to log files. It

Chapter 6: Implementation 108

takes care of much of the work needed to calculate statistics on data columns and to log a
thorough experimental setup to every log file.

The library treats a log file as a collection of tables of data. Each table contains a number
of rows, one per dynamic invocation of the LOGS statement (see Section 4.5.3 [Writing to a
log file], page 71). Each row contains a number of columns, one per aggregate expression
(see Section 4.2.3 [Aggregate expressions], page 59) expressed statically in a coNCeP-
TuaL program.2 Log-file functions should be called only if the coNCePTuaL source code
accesses a log file (see Section 4.5.3 [Writing to a log file], page 71).

Functionvoid ncptl log add comment (const char *key, const char
*value)

ncptl_log_add_comment() makes it possible for a backend to add backend-specific
〈key :value〉 pairs to the set of header comments that get written to a log file (see
Section 3.4.1 [Log-file format], page 23). ncptl_log_add_comment() can be called
repeatedly; all calls should precede ncptl_log_open() to have any effect. Note that
ncptl_log_add_comment() makes a copy of key and value, so these need not be
heap-allocated.

FunctionNCPTL_LOG_FILE_STATE * ncptl log open (char *template,
ncptl_int processor)

Given a filename template containing a ‘%d’ placeholder and a processor number
(i.e., the process’s physical rank in the computation), ncptl_log_open() creates and
opens a log file named by the template with ‘%d’ replaced by processor. For ex-
ample, if template is ‘/home/me/myprog-%d.log’ and processor is ‘3’, the resulting
filename will be ‘/home/me/myprog-3.log’. ncptl_log_open() must be called be-
fore any of the other ncptl_log_something() functions—except for ncptl_log_add_
comment(), which should be called before ncptl_log_open(). ncptl_log_open()
returns a pointer to an opaque NCPTL_LOG_FILE_STATE value; the backend will need
to pass this pointer to nearly all of the other log-file functions described in this section.

Functionvoid ncptl log write header (NCPTL_LOG_FILE_STATE *logstate,
char *progname, char *backend name, char *backend desc, int processor,
int numtasks, NCPTL_CMDLINE *arglist, int numargs, char **sourcecode)

ncptl_log_write_header() standardizes the header with which all log files begin.
progname is the name of the program executable (argv[0] in C). backend name is the
name of the backend in ‘language_library ’ format (e.g., ‘java_rmi’). backend desc is
a brief description of the backend (e.g., ‘Java + RMI’). processor is the caller’s physical
rank in the program (the same value passed to ncptl_log_open()). numtasks is the
total number of tasks in the program. arglist is the list of arguments passed to
ncptl_parse_command_line() and numargs is the number of entries in that list.
sourcecode is the complete coNCePTuaL source code stored as a NULL-terminated
list of NULL-terminated strings.

2 Writing A HISTOGRAM OF THE 〈expr〉 produces two columns, one for values and one for tallies.

Chapter 6: Implementation 109

Functionvoid ncptl log write (NCPTL_LOG_FILE_STATE *logstate, int
logcolumn, char *description, LOG_AGGREGATE aggregate, double value)

Push value value onto column logcolumn of the current table. Gaps between columns
are automatically elided. description is used as the column header for column log-
column. Acceptable values for aggregate are defined in Section B.3 [Representing
aggregate functions], page 133.

Functionvoid ncptl log compute aggregates (NCPTL_LOG_FILE_STATE
*logstate)

ncptl_log_compute_aggregates() implements the COMPUTES AGGREGATES construct
described in Section 4.5.3 [Writing to a log file], page 71. When ncptl_log_compute_
aggregates() is invoked, the coNCePTuaL run-time library uses the aggregate
function specified by ncptl_log_write() to aggregate all of the data that accumu-
lated in each column since the last invocation of ncptl_log_compute_aggregates().
Note that ncptl_log_compute_aggregates() is called implicitly by ncptl_log_
commit_data().

Functionvoid ncptl log commit data (NCPTL_LOG_FILE_STATE *logstate)
The coNCePTuaL run-time library keeps the current data table in memory and
doesn’t write anything to the log file until ncptl_log_commit_data() is called, at
which point the run-time library writes all accumulated data to the log file and be-
gins a new data table. Note that ncptl_log_commit_data() is called implicitly by
ncptl_log_close(). Furthermore, a backend should call ncptl_log_commit_data()
when beginning execution of a new statement in a coNCePTuaL program. For
instance, the ‘codegen_c_generic.py’ backend invokes ncptl_log_commit_data()
from code_def_main_newstmt.

Functionvoid ncptl log write footer (NCPTL_LOG_FILE_STATE *logstate)
ncptl_log_write_footer() write a stock footer to the log file.

Functionvoid ncptl log close (NCPTL_LOG_FILE_STATE *logstate)
Close the log file. No ncptl_log_something() function should be called after ncptl_
log_close() is invoked.

6.3.8 Random-task functions

Randomness appears in various forms in the coNCePTuaL language, such as when
assigning a task to A RANDOM PROCESSOR (see Section 4.6.5 [Reordering task IDs], page 76)
or when let-binding A RANDOM TASK or A RANDOM TASK OTHER THAN a given task ID to a
variable (see Section 4.7.3 [Binding variables], page 83). The following functions are used to
select tasks at random. coNCePTuaL currently uses the Mersenne Twister as its random-
number generator. Hence, given the same seed, a coNCePTuaL program will see the same
random-number sequence on every platform.

Functionint ncptl seed random task (int seed)
Initialize the random-number generator needed by ncptl_random_task(). If seed
is zero, ncptl_seed_random_task() selects an arbitrary seed value. ncptl_seed_
random_task() returns the seed that was used.

Chapter 6: Implementation 110

Functionncptl_int ncptl random task (ncptl_int lower bound, ncptl_int
upper bound, ncptl_int excluded)

Return a randomly selected task number from lower bound to upper bound (both
inclusive). If excluded is nonnegative then that task number will never be selected,
even if it’s within range.

6.3.9 Queue functions

Because queues are a widely applicable construct, the run-time library provides support
for queues of arbitrary datatypes. In the current implementation, these can more precisely
be termed “dynamically growing lists” than “queues”. However, they may be extended in
a future version of the library to support more queue-like functionality.

FunctionNCPTL_QUEUE * ncptl queue init (ncptl_int eltbytes)
ncptl_queue_init() creates and initializes a dynamically growing queue in which
each element occupies eltbytes bytes of memory.

Functionvoid * ncptl queue allocate (NCPTL_QUEUE *queue)
Allocate a new data element at the end of queue queue. The queue passed to
ncptl_queue_allocate() must be one returned by ncptl_queue_init(). ncptl_
queue_allocate() returns a pointer to the data element allocated.

Functionvoid * ncptl queue push (NCPTL_QUEUE *queue, void *element)
Push (via a memory copy) the element pointed to by element onto the end of queue
queue and return a pointer to the copy in the queue. The queue passed to ncptl_
queue_allocate() must be one returned by ncptl_queue_init(). (ncptl_queue_
push() is actually implemented in terms of ncptl_queue_allocate().)

Functionvoid * ncptl queue pop (NCPTL_QUEUE *queue)
Pop a pointer to the element at the head of queue queue. If queue is empty, return
NULL. The pointer returned by ncptl_queue_pop() is guaranteed to be valid until
the next invocation of ncptl_queue_free().

Functionvoid * ncptl queue contents (NCPTL_QUEUE *queue, int copyelts)
Return queue queue as an array of elements. If ncptl_queue_contents() is passed
‘1’ for copyelts, a new array is allocated using ncptl_malloc(); the queue’s internal
array is copied to the newly allocated array; and, this new array is returned to the
caller. It is the caller’s responsibility to pass the result to ncptl_free() when the
array is no longer needed. If ncptl_queue_contents() is passed ‘0’ for copyelts, a
pointer to the queue’s internal array is returned without first copying it. This pointer
should not be passed to ncptl_free() as it is still needed by queue.

Functionncptl_int ncptl queue length (NCPTL_QUEUE *queue)
Return the number of elements in queue queue.

Functionvoid ncptl queue empty (NCPTL_QUEUE *queue)
Empty a queue, freeing the memory it had previously used. queue should not be used
after a call to ncptl_queue_empty(). Queue contents returned by ncptl_queue_
contents() with copyelts set to ‘0’ are also invalidated.

Chapter 6: Implementation 111

6.3.10 Language-visible functions

The coNCePTuaL language contains a number of built-in functions that perform var-
ious operations on floating-point numbers (used when writing to a log file or the standard
output device) and integers (used at all other times) and that determine the IDs of neigh-
boring tasks on a variety of topologies. Each function occurs in two forms: ncptl_func_
function, which maps ncptl_ints to ncptl_ints, and ncptl_dfunc_function, which maps
doubles to doubles. See Section 4.2.2 [Built-in functions], page 49, for additional details
about each function’s semantics.

Although some of the functions described in this section are fairly simple, including them
in the run-time library ensures that each function returns the same value across different
backends and across different platforms.

Integer functions

Functionncptl_int ncptl func sqrt (ncptl_int num)
Functiondouble ncptl dfunc sqrt (double num)

ncptl_func_sqrt() returns the unique integer x such that x2 ≤ num ∧ (x + 1)2 >
num. ncptl_dfunc_sqrt() returns

√
num in double-precision arithmetic.

Functionncptl_int ncptl func cbrt (ncptl_int num)
ncptl_func_cbrt() returns the unique integer x such that x3 ≤ num ∧ (x + 1)3 >
num. ncptl_dfunc_cbrt() returns 3

√
num in double-precision arithmetic.

Functionncptl_int ncptl func bits (ncptl_int num)
Functiondouble ncptl dfunc bits (double num)

Return the minimum number of bits needed to represent a given integer. (num is
rounded up to the nearest integer in the case of ncptl_dfunc_bits().)

Functionncptl_int ncptl func log10 (ncptl_int num)
Functiondouble ncptl dfunc log10 (double num)

Return log10(num) In the case of ncptl_func_log10(), this value is rounded down
to the nearest integer.

Functionncptl_int ncptl func factor10 (ncptl_int num)
Functiondouble ncptl dfunc factor10 (double num)

Return num rounded down to the nearest single-digit factor of a power of 10.

Functionncptl_int ncptl func abs (ncptl_int num)
Functiondouble ncptl dfunc abs (double num)

Return |num|. In the case of ncptl_func_log10(), this value is rounded down to the
nearest integer.

Functionncptl_int ncptl func power (ncptl_int base, ncptl_int
exponent)

Functiondouble ncptl dfunc power (double base, double exponent)
Return base raised to the power of exponent.

Chapter 6: Implementation 112

Functionncptl_int ncptl func modulo (ncptl_int numerator, ncptl_int
denominator)

Functiondouble ncptl dfunc modulo (double numerator, double
denominator)

Return the remainder of dividing numerator by denominator. The result is guaranteed
to be a nonnegative integer. ncptl_dfunc_modulo() rounds each of numerator and
denominator down to the nearest integer before dividing and taking the remainder.

Floating-point functions

Functionncptl_int ncptl func floor (ncptl_int num)
Functiondouble ncptl dfunc floor (double num)

Return bnumc. (This is the identity function in the case of ncptl_func_floor().)

Functionncptl_int ncptl func ceiling (ncptl_int num)
Functiondouble ncptl dfunc ceiling (double num)

Return dnume. (This is the identity function in the case of ncptl_func_ceiling().)

Functionncptl_int ncptl func round (ncptl_int num)
Functiondouble ncptl dfunc round (double num)

Return num rounded to the nearest integer. (This is the identity function in the case
of ncptl_func_round().)

Topology functions

In the following functions, the ‘dfunc’ versions merely cast their arguments to ncptl_
ints and call the corresponding ‘func’ versions.

Functionncptl_int ncptl func tree parent (ncptl_int task, ncptl_int
arity)

Functiondouble ncptl dfunc tree parent (double task, double arity)
Return task task’s parent in an arity-ary tree.

Functionncptl_int ncptl func tree child (ncptl_int task, ncptl_int
child, ncptl_int arity)

Functiondouble ncptl dfunc tree child (double task, double child, double
arity)

Return child child of task task in an arity-ary tree.

Functionncptl_int ncptl func grid coord (ncptl_int vartask, ncptl_int
coord, ncptl_int width, ncptl_int height, ncptl_int depth)

Functiondouble ncptl dfunc grid coord (double vartask, double coord,
double width, double height, double depth)

Return task task’s x coordinate (coord = 0), y coordinate (coord = 1), or z coordinate
(coord = 2) on a width× height × depth mesh (or torus).

Chapter 6: Implementation 113

Functionncptl_int ncptl func grid neighbor (ncptl_int task, ncptl_int
torus, ncptl_int width, ncptl_int height, ncptl_int depth, ncptl_int
xdelta, ncptl_int ydelta, ncptl_int zdelta)

Functiondouble ncptl dfunc grid neighbor (double task, double torus,
double width, double height, double depth, double xdelta, double ydelta,
double zdelta)

Return one of task task’s neighbors—not necessarily an immediate neighbor—on
a 3-D mesh or torus. For the following explanation, assume that task task lies
at coordinates (x, y, z) on a width × height × depth mesh or torus. In the mesh
case (torus = 0), the value returned is the task ID corresponding to coordinates
(x + xdelta, y + ydelta, z + zdelta). In the torus case (torus = 1), the value re-
turned is the task ID corresponding to coordinates ((x + xdelta) mod width, (y +
ydelta) mod height, (z + zdelta) mod depth).

Note that there are no 1-D or 2-D grid functions. Instead, the appropriate 3-D function
should be used with depth and—in the 1-D case—height set to ‘1’.

Functionncptl_int ncptl func knomial parent (ncptl_int task,
ncptl_int arity, ncptl_int numtasks)

Functiondouble ncptl dfunc knomial parent (double task, double arity,
double numtasks)

Return task task’s parent in an arity-nomial tree of numtasks tasks.

Functionncptl_int ncptl func knomial child (ncptl_int task, ncptl_int
child, ncptl_int arity, ncptl_int numtasks, ncptl_int count only)

Functiondouble ncptl dfunc knomial child (double task, double child,
double arity, double numtasks, double count only)

If count only is ‘0’, return task task’s childth child in an arity-nomial tree of numtasks
tasks. If count only is ‘1’, return the number of children task task has in an arity-
nomial tree of numtasks tasks.

Random-number functions

Functionncptl_int ncptl func random uniform (ncptl_int lower bound,
ncptl_int upper bound)

Functiondouble ncptl dfunc random uniform (double lower bound,
double upper bound)

Return a number in the interval [lower bound, upper bound) selected at random with
a uniform distribution.

Functionncptl_int ncptl func random gaussian (ncptl_int mean,
ncptl_int stddev)

Functiondouble ncptl dfunc random gaussian (double mean, double
stddev)

Return a number selected at random from a Gaussian distribution with mean mean
and standard deviation stddev.

Chapter 6: Implementation 114

Functionncptl_int ncptl func random poisson (ncptl_int mean)
Functiondouble ncptl dfunc random poisson (double mean)

Return an integer selected at random from a Poisson distribution with mean mean
and standard deviation

√
mean.

6.3.11 Finalization functions

The following function should be called towards the end of the generated code’s execu-
tion.

Functionvoid ncptl finalize (void)
Shut down the coNCePTuaL run-time library. No run-time library functions should
be invoked after ncptl_finalize().

Among other operations, ncptl_finalize() resets all signal handlers to their original
values and kills the watchdog process, if any. (See Section 3.3 [Running coNCePTuaL
programs], page 21.) Because the watchdog mechanism is based on trapping SIGCHLD signal,
it is important that ncptl_finalize() be called before the termination of any fork()’ed
processes. Otherwise, an undesired watchdog interrupt will kill the parent process.

Chapter 7: Tips and Tricks 115

7 Tips and Tricks

The following sections present some ways to make better use of coNCePTuaL in terms
of producing simpler, more efficient programs.

7.1 Using out-of-bound task IDs to simplify code

See Section 4.3 [Task descriptions], page 61, mentions a language feature that can sub-
stantially simplify coNCePTuaL programs: Operations involving out-of-bound task IDs
are silently ignored. The beauty of this feature is that it reduces the need for special cases
at network boundaries. Consider, for example, a simple pipeline pattern in which each task
in turn sends a message to the subsequent task:

ALL TASKS t SEND A 64 DOUBLEWORD MESSAGE TO TASK t+1.

Because implicit receives are posted before the corresponding sends (see Section 4.4.2
[Sending], page 67), all tasks except task 0 start by posting a blocking receive. (No task
is sending to task 0.) Task 0 is therefore free to send a message to task 1. Receipt of that
message unblocks task 1, who then sends a message to task 2, thereby unblocking task 3,
and so forth. Without needing an explicit special case in the program, task ‘num_tasks-1’
receives a message from task ‘num_tasks-2’ but does not attempt to send a message to
nonexistent task ‘num_tasks’, thanks to the rule that communication with nonexistent
tasks turns into a no-op (i.e., is elided from the program).

As a more complex variation of the same program, consider a wavefront communication
pattern that progresses from the upper-left corner of a mesh to the lower-right corner. Such
a pattern can be expressed in just four lines of coNCePTuaL (receive left, receive up,
send right, send down) by relying on the property that communication with a nonexistent
task is simply not executed:

TASK MESH_NEIGHBOR(src, xsize, +1, ysize, 0) RECEIVES A
64 DOUBLEWORD MESSAGE FROM ALL TASKS src THEN

TASK MESH_NEIGHBOR(src, xsize, 0, ysize, +1) RECEIVES A
64 DOUBLEWORD MESSAGE FROM ALL TASKS src THEN

ALL TASKS src SEND A 64 DOUBLEWORD MESSAGE TO
UNSUSPECTING TASK MESH_NEIGHBOR(src, xsize, +1, ysize, 0) THEN

ALL TASKS src SEND A 64 DOUBLEWORD MESSAGE TO
UNSUSPECTING TASK MESH_NEIGHBOR(src, xsize, 0, ysize, +1).

To understand the preceding program recall that MESH_NEIGHBOR returns ‘-1’ for nonex-
istent neighbors. Because ‘-1’ is outside of the range [0, num_tasks) communication with
a nonexistent neighbor is ignored. To help the reader understand the preceding program,
we present a trace of the events it posts as it runs with a 2× 2 arrangement of tasks:

[TRACE] phys: 0 | virt: 0 | action: SEND | event: 1 / 2 | lines: 3 - 3
[TRACE] phys: 1 | virt: 1 | action: RECV | event: 1 / 2 | lines: 1 - 1
[TRACE] phys: 2 | virt: 2 | action: RECV | event: 1 / 2 | lines: 2 - 2
[TRACE] phys: 3 | virt: 3 | action: RECV | event: 1 / 2 | lines: 1 - 1

[TRACE] phys: 0 | virt: 0 | action: SEND | event: 2 / 2 | lines: 4 - 4
[TRACE] phys: 1 | virt: 1 | action: SEND | event: 2 / 2 | lines: 4 - 4

Chapter 7: Tips and Tricks 116

[TRACE] phys: 2 | virt: 2 | action: SEND | event: 2 / 2 | lines: 3 - 3

[TRACE] phys: 3 | virt: 3 | action: RECV | event: 2 / 2 | lines: 2 - 2

The c_trace backend (see Section 3.2.4 [The c trace backend], page 14) was used to
produce that trace. To increase clarity, we manually added blank lines to group concurrent
events (i.e., there is no significance to the order of the TRACE lines within each group). The
important thing to notice is that there are exactly four receives and exactly four sends:

• Although all tasks are instructed to receive a message from the left, only tasks 1 and 3
actually do so;

• although all tasks are instructed to receive a message from above, only tasks 2 and 3
actually do so;

• although all tasks are instructed to send a message to the right, only tasks 0 and 2
actually do so; and,

• although all tasks are instructed to send a message downwards, only tasks 0 and 1
actually do so.

Because communication with nonexistent tasks is elided at program initialization time there
is no run-time cost for such operations—as evidenced by the c_trace output presented
above. Furthermore, there is no reliance on the backend to drop messages from nonexistent
senders or to nonexistent receivers; it is perfectly safe to utilize no-op’ed communcation in
any coNCePTuaL program and when using any backend.

7.2 Proper use of conditionals

coNCePTuaL supports two forms of conditional execution: conditional expressions
(see Section 4.2.1 [Arithmetic expressions], page 48) and conditional statements (see Sec-
tion 4.7.4 [Conditional execution], page 84). From the perspective of code readability and
“thinking in coNCePTuaL” it is generally preferable to use restricted identifiers (see Sec-
tion 4.3.1 [Restricted identifiers], page 61) to select groups of tasks rather than a loop with
a conditional as would be typical in other programming languages. For example, consider
the following code in which certain even-numbered tasks each send a message to the right:

FOR EACH evtask IN {0, ..., num_tasks-1}
IF evtask IS EVEN /\ evtask MOD 3 <> 2 THEN
TASK evtask SENDS A 64 BYTE MESSAGE TO TASK evtask+1

While the preceding control flow is representative of that in other programming languages,
coNCePTuaL can express the same communication pattern without needing either a loop
or an explicit conditional statement:

TASK evtask SUCH THAT evtask IS EVEN /\ evtask MOD 3 <> 2 SENDS A 64
BYTE MESSAGE TO TASK evtask+1

One situation in which conditional statements do not have a convenient analogue is
when a program selects among multiple disparate subprograms based on a command-line
parameter:

Chapter 7: Tips and Tricks 117� �
func IS "Operation to perform (1=op1; 2=op2; 3=op3)" AND COMES FROM
"--function" OR "-f" WITH DEFAULT 1.

ASSERT THAT "the function must be 1, 2, or 3" WITH func>=1 /\ func<=3.

IF func = 1 THEN {
Perform operation op1.

}
OTHERWISE IF func = 2 THEN {

Perform operation op2.
}
OTHERWISE IF func = 3 THEN {

Perform operation op3.
}
 	
7.3 Memory efficiency

As described in Section 6.2.3 [Generated code], page 98, the c_generic backend (and
therefore all derived backends) generates programs that run by executing a sequence of
events in an event list. While this form of program execution makes it possible to hoist a
significant amount of computation out of the timing loop, it does imply that a program’s
memory requirements are proportional to the number of statements that the program exe-
cutes.

coNCePTuaL’s memory usage can be reduced by taking advantage of repeat counts
within statements that support such a construct. The language’s 〈send stmt〉 (see Sec-
tion 4.4.2 [Sending], page 67), 〈receive stmt〉 (see Section 4.4.3 [Receiving], page 68), and
〈touch stmt〉 (see Section 4.6.4 [Touching memory], page 75) are all examples of statements
that accept repeat counts. For other statements and for groups of statements that repeat,
the FOR. . .REPETITIONS statement produces a single EV_REPEAT event followed by a single
instance of the events in the loop body. This technique is valid because coNCePTuaL
knows a priori that every iteration is identical to every other iteration. In contrast, the
more general FOR EACH statement can induce different behavior each iteration based on the
value of the loop variable so programs must conservatively instantiate the events in the loop
body for every iteration. Consider the following examples:

Least efficient:
‘FOR EACH i IN {1, ..., 1000} TASK 0 TOUCHES A 1 WORD MEMORY REGION’
(1000 EV_TOUCH events on task 0)

More efficient:
‘FOR 1000 REPETITIONS TASK 0 TOUCHES A 1 WORD MEMORY REGION’
(an EV_REPEAT event and an EV_TOUCH event on task 0)

Most efficient:
‘TASK 0 TOUCHES A 1 WORD MEMORY REGION 1000 TIMES’
(one EV_TOUCH event on task 0)

Chapter 7: Tips and Tricks 118

Least efficient:
‘FOR EACH i IN {1, ..., 1000} TASK 0 SENDS A 32 KILOBYTE MESSAGE TO
TASK 1’
(1000 EV_SEND events on task 0 and 1000 EV_RECV events on task 1)

More efficient:
‘FOR 1000 REPETITIONS TASK 0 SENDS A 32 KILOBYTE MESSAGE TO TASK 1’
(an EV_REPEAT event and an EV_SEND event on task 0 plus an EV_REPEAT event
and an EV_RECV event on task 1)

Most efficient:
‘TASK 0 SENDS 1000 32 KILOBYTE MESSAGES TO TASK 1’
(currently the same as the above although a future release of coNCePTuaL
may reduce this to a single EV_SEND event on task 0 and a single EV_RECV event
on task 1)

Chapter 8: Troubleshooting 119

8 Troubleshooting

In any complex system, things are bound to go wrong. The following sections present
solutions to various problems that have been encountered when building coNCePTuaL
and running coNCePTuaL programs.

8.1 Interpreting configure warnings

The ‘configure’ script performs a large number of tests to ensure that coNCePTuaL
will compile properly and function as expected. In particular, any missing or improperly
functioning feature upon which the C run-time library relies causes ./configure to issue
a ‘not building the C run-time library’ warning. Without its run-time library, coN-
CePTuaL’s functionality is severely limited so it’s worth every effort to get ./configure
to build that.

Like all Autoconf scripts, ‘configure’ logs detailed information to a ‘config.log’
file. As a general diagnostic technique one should search for puzzling output in
‘config.log’ and examine the surrounding context. For instance, on one particular
system, ./configure output ‘no’ following ‘checking if we can run a trivial program
linked with "-lrt -lm -lpopt "’ and then refused to build the run-time library. The
following relevant lines appeared in ‘config.log’:� �
configure:12845: checking if we can run a trivial program linked with "-lrt
-lm -lpopt "
configure:12862: /usr/local/bin/gcc -o conftest -g -O2 conftest.c -lrt
-lm -lpopt >&5
configure:12865: $? = 0
configure:12867: ./conftest
ld.so.1: ./conftest: fatal: libpopt.so.0: open failed: No such file or
directory
./configure: line 1: 5264 Killed ./conftest$ac_exeext
configure:12870: $? = 137
configure: program exited with status 137
configure: failed program was:
#line 12851 "configure"
#include "confdefs.h"

int
main (int argc, char *argv[])
{

return 0;
}
configure:12879: result: no
 	

Note the error message from ‘ld.so.1’ about ‘libpopt.so.0’ not being found.
Further investigation revealed that although ‘/usr/local/bin/gcc’ knew to look in
‘/usr/local/lib/’ for shared libraries, that directory was not in the search path utilized
by ‘ld.so.1’. Consequently, it couldn’t find ‘/usr/local/lib/libpopt.so.0’. The

Chapter 8: Troubleshooting 120

solution in this case was to add ‘/usr/local/lib/’ to the LD_LIBRARY_PATH environment
variable before running ./configure .

In general, ‘config.log’ should be the first place to look when trying to interpret warn-
ings issued by ./configure . Furthermore, note that certain command-line options to
./configure (see Section 2.1 [configure], page 4) may help bypass problematic operations
that the script stumbles over.

8.2 Compaq compilers on Alpha CPUs

Although coNCePTuaL builds fine on Alpha-based systems when using a ‘gcc’
compiler, Compaq’s C compilers are sometimes problematic. For instance, the
‘libncptl_wrap.c’ source file fails to compile on a system with the following versions of
the operating system, C compiler, and Python interpreter:� �
% uname -a
OSF1 qsc14 V5.1 2650 alpha
% cc -V
Compaq C V6.5-011 on Compaq Tru64 UNIX V5.1B (Rev. 2650)
Compiler Driver V6.5-003 (sys) cc Driver
% python -V
Python 2.3
 	

On the system that was tested, ‘cc’ aborts with a set of ‘Missing type specifier or
type qualifier’ messages. The problem appears to be that some of Compaq’s standard
C header files fail to #include various header files they depend upon. A workaround is to
insert the following C preprocessor directives in ‘libncptl_wrap.c’ before the line reading
‘#include "Python.h"’:

#include <sys/types.h>
#include <sys/time.h>
#include <sys/stat.h>

A second problem with Compaq compilers on Alpha-based systems occurs under Linux
when using Compaq’s ‘ccc’ compiler:� �
% uname -a
Linux wi 2.4.21-3.7qsnet #2 SMP Fri Oct 17 14:08:00 MDT 2003 alpha unknown
% ccc -V
Compaq C T6.5-002 on Linux 2.4.21-3.7qsnet alpha
Compiler Driver T6.5-001 (Linux) cc Driver
Installed as ccc-6.5.6.002-1
Red Hat Linux release 7.2 (Enigma)
Using /usr/lib/gcc-lib/alpha-redhat-linux/2.96 (4).
 	
When linking files into a shared object, ‘ccc’ aborts with a ‘[. . .]/.libs: file not
recognized: Is a directory’ error message. The problem appears to be that ‘libtool’ is
confused about the arguments it’s supposed to pass to the linker; ‘libtool’ uses ‘--rpath’

Chapter 8: Troubleshooting 121

(two hyphens) where the Compaq linker expects ‘-rpath’ (one hyphen). As a workaround,
you can edit the ‘libtool’ file after running ./configure but before running make.
Simply replace ‘--rpath’ with ‘-rpath’ in the following ‘libtool’ line and the problem
should go away:

hardcode_libdir_flag_spec="\${wl}--rpath \${wl}\$libdir"

8.3 “Cannot open shared object file” errors

By default, make will build and make install will install both a static and a dynamic
version of the coNCePTuaL run time library. Most linkers give precedence to the dynamic
library over the static library unless the static library is requested explicitly. As a conse-
quence, the dynamic version of the coNCePTuaL run-time library needs to be available
at program-load time in order to avoid error messages like the following:� �
a.out: error while loading shared libraries: libncptl.so.0: cannot open
shared object file: No such file or directory
 	

To point the Unix dynamic loader to the coNCePTuaL run-time library merely add
the directory in which ‘libncptl.so’ was installed (by default, ‘/usr/local/lib’) to your
LD_LIBRARY_PATH environment variable. Alternatively, use the --disable-shared configu-
ration option (see Section 2.1 [configure], page 4) to prevents coNCePTuaL from building
the dynamic version of the run-time library altogether, thereby forcing the linker to use the
static version:� �
make uninstall
make clean
./configure --disable-shared ...
make
make install
 	

As mentioned in Section 2.1 [configure], page 4, however, ‘libncptlmodule.so’ can’t be
built when --disable-shared is in effect.

8.4 Inhibiting the use of child processes

As of this writing, the coNCePTuaL run-time library spawns child processes for two
purposes: to implement watchdog interrupts (initiated by the --watchdog option described
in Section 3.3 [Running coNCePTuaL programs], page 21); and, to acquire certain pieces
of system information for the log-file header (see Section 3.4.1 [Log-file format], page 23).
Unfortunately, some job launchers and messaging layers get confused when processes under
their control spawn other processes. For example, a child process might reinitialize shared
device-driver state. The result is generally a crashed or hung program.

As a workaround, the coNCePTuaL run-time library will suppress the use of fork(),
system(), popen(), and other process-spawning functions if the NCPTL_NOFORK environment
variable is set at program-initialization time. Nonessential process-spawning functions, such
as those used to produce the log-file headers, are then ignored; essential process-spawning
functions, such as those that implement coNCePTuaL’s watchdog interrupt, cause the

Chapter 8: Troubleshooting 122

program to abort. (In other words, --watchdog should not be used when NCPTL_NOFORK is
set.) If a coNCePTuaL program is inexplicably but consistently crashing or hanging, try
setting NCPTL_NOFORK and re-running the program to see if that fixes it.

8.5 Keeping programs from dying on a signal

By default, coNCePTuaL programs terminate upon receiving any unexpected signal.
The error message list the signal number and, if available, a human-readable signal name:� �
myprogram: Received signal 28 (Window changed)
 	

The motivation behind this decision to abort on unexpected signals is that signal-
handling adversely affects a program’s performance. Hence, by running to completion,
a program indicates that it did not receive any unexpected signals. However, some mes-
saging layers use signals internally (most commonly SIGUSR1 and SIGUSR2) to coordinate
helper processes. To permit a program to deliver such signals to the messaging layer a
user should use the program’s --no-trap command-line option as described in Section 3.3
[Running coNCePTuaL programs], page 21.

8.6 “Unaligned access” warnings

On some platforms you may encounter messages like the following written to the console
and/or various system log files (e.g., ‘/var/log/messages’):

myprog(25044): unaligned access to 0x6000000000001022,
ip=0x40000000000009e1

Alternatively:
Unaligned access pid=7890104 <myprog> va=0x140004221 pc=0x1200012b4
ra=0x1200012a4 inst=0xb449fff8

What’s happening is that some CPUs require n-byte-wide data to be aligned on an n-
byte boundary. For example, a 64-bit datatype can be accessed properly only from memory
locations whose address is a multiple of 64 bits (8 bytes). On some platforms, misaligned
accesses abnormally terminate the program, typically with a SIGBUS signal. On other
platforms, misaligned accesses interrupt the operating system. The operating system fixes
the access by splitting it into multiple aligned accesses plus some bit masking and shifting
and then notifying the user and/or system administrator that a fixup occurred.

coNCePTuaL’s ‘configure’ script automatically determines what data alignments are
allowed by the architecture but it has no way to determine if fixups occurred as these are
transparent to programs. The result is annoying “unaligned access” messages such as those
quoted above. One solution is to use the --with-alignment option to ‘configure’ to spec-
ify explicitly the minimum data alignment that coNCePTuaL should be permitted to use.
Alternatively, some operating systems provide a mechanism to cause misaligned accesses to
result in a SIGBUS signal instead of a fixup and notification message. On Linux/IA-64 this is
achieved with the command pctrl --unaligned=signal. On OSF1/Alpha the equivalent
command is uac p sigbus. Be sure to rerun ‘configure’ after issuing those commands to
make it reexamine the set of valid data alignments.

Appendix A: Reserved Words 123

Appendix A Reserved Words

As mentioned in Section 4.1 [Primitives], page 46, not all identifiers can be used as
variables. The following sections provide a complete list of identifiers that are forbidden as
variable names. These identifiers fall into two categories: keywords, which are never allowed
as variable names, and predeclared variables, which are “read-only” variables; they can be
utilized just like any other variables but cannot be redeclared.

A.1 Keywords

The following is a list of all currently defined keywords in the coNCePTuaL language.
It is an error to try to use any of these as identifiers.
• A

• ABS

• AGGREGATES

• ALIGNED

• ALL

• AN

• AND

• ARE

• ARITHMETIC

• AS

• ASSERT

• ASSIGNED

• ASYNCHRONOUSLY

• AWAIT

• AWAITS

• BACKEND

• BE

• BIT

• BITS

• BUFFER

• BUT

• BYTE

• BYTES

• CBRT

• CEILING

• COMES

• COMPLETION

• COMPLETIONS

Appendix A: Reserved Words 124

• COMPUTE

• COMPUTES

• COUNTERS

• DATA

• DAY

• DAYS

• DEFAULT

• DEVIATION

• DIVIDES

• DOUBLEWORD

• DOUBLEWORDS

• EACH

• EVEN

• EXECUTE

• EXECUTES

• FACTOR10

• FINAL

• FLOOR

• FOR

• FROM

• GEOMETRIC

• GIGABYTE

• GREATER

• HALFWORD

• HALFWORDS

• HARMONIC

• HISTOGRAM

• HOUR

• HOURS

• IF

• IN

• INTEGER

• INTEGERS

• INTO

• IS

• IT

• ITS

• KILOBYTE

• KNOMIAL_CHILD

Appendix A: Reserved Words 125

• KNOMIAL_CHILDREN

• KNOMIAL_PARENT

• LANGUAGE

• LESS

• LET

• LOG

• LOG10

• LOGS

• MAX

• MAXIMUM

• MEAN

• MEDIAN

• MEGABYTE

• MEMORY

• MESH_NEIGHBOR

• MESH_COORDINATE

• MESSAGE

• MESSAGES

• MICROSECOND

• MICROSECONDS

• MILLISECOND

• MILLISECONDS

• MIN

• MINIMUM

• MINUTE

• MINUTES

• MISALIGNED

• MOD

• MULTICAST

• MULTICASTS

• NONUNIQUE

• NOT

• ODD

• OF

• OR

• OTHER

• OTHERWISE

• OUTPUT

• OUTPUTS

Appendix A: Reserved Words 126

• PAGE

• PAGES

• PLUS

• PROCESSOR

• PROCESSORS

• QUADWORD

• QUADWORDS

• RANDOM

• RANDOM_GAUSSIAN

• RANDOM_POISSON

• RANDOM_UNIFORM

• REAL

• RECEIVE

• RECEIVES

• REGION

• REPETITION

• REPETITIONS

• REQUIRE

• RESET

• RESETS

• ROOT

• ROUND

• SECOND

• SECONDS

• SEND

• SENDS

• SIZED

• SLEEP

• SLEEPS

• SQRT

• STANDARD

• STRIDE

• SUCH

• SUM

• SYNCHRONIZATION

• SYNCHRONIZE

• SYNCHRONIZES

• SYNCHRONOUSLY

• TASK

Appendix A: Reserved Words 127

• TASKS

• THAN

• THAT

• THE

• THEIR

• THEM

• THEN

• TIME

• TIMES

• TO

• TORUS_NEIGHBOR

• TORUS_COORDINATE

• TOUCH

• TOUCHES

• TOUCHING

• TREE_PARENT

• TREE_CHILD

• UNALIGNED

• UNIQUE

• UNSUSPECTING

• VALUE

• VARIANCE

• VERIFICATION

• VERSION

• WARMUP

• WHILE

• WHO

• WITH

• WITHOUT

• WORD

• WORDS

• XOR

A.2 Predeclared variables

coNCePTuaL predeclares a set of variables that programs can use but not redeclare.
These variables and their descriptions are listed below.

bit_errors
Total number of bit errors observed

Appendix A: Reserved Words 128

bytes_received
Total number of bytes received

bytes_sent
Total number of bytes sent

elapsed_usecs
Elapsed time in microseconds

msgs_received
Total number of messages received

msgs_sent
Total number of messages sent

num_tasks
Number of tasks running the program

total_bytes
Sum of bytes sent and bytes received

total_msgs
Sum of messages sent and messages received

As should be evident from their descriptions, coNCePTuaL’s predeclared variables are
updated dynamically. Each access can potentially return a different result.

Appendix B: Backend Reference 129

Appendix B Backend Reference

B.1 Method calls

The following method calls must be defined when writing a coNCePTuaL backend from
scratch. They are invoked indirectly as part of SPARK’s AST traversal. See Section 6.2
[Backend creation], page 94, for more information.
• n_aggregate_expr

• n_aggregate_func

• n_all_others

• n_an

• n_assert

• n_awaits_completion

• n_backend

• n_block_stmt

• n_buffer_number

• n_byte_count

• n_comes_from

• n_complex_stmt

• n_complex_stmt_list

• n_compute_aggregates

• n_computes_for

• n_data_multiplier

• n_data_type

• n_even

• n_expr

• n_for_count

• n_for_each

• n_for_time

• n_func_call

• n_header_decl

• n_ident

• n_ifelse_expr

• n_if_stmt

• n_in_range

• n_integer

• n_item_size

• n_let

• n_let_binding

Appendix B: Backend Reference 130

• n_let_binding_list

• n_log_expr_list

• n_logs

• n_mcast_stmt

• n_message_alignment

• n_message_spec

• n_no_touching

• n_odd

• n_op_divides

• n_op_power

• n_outputs

• n_processor_stmt

• n_program

• n_random_stride

• n_range_list

• n_real

• n_receive_attrs

• n_receive_stmt

• n_resets

• n_send_attrs

• n_send_stmt

• n_simple_stmt

• n_sleeps_for

• n_stride

• n_string

• n_string_or_expr_list

• n_string_or_log_comment

• n_such_that

• n_sync_stmt

• n_task

• n_task_all

• n_then

• n_time_unit

• n_top_level_complex_stmt

• n_touching

• n_touching_type

• n_touch_stmt

• n_unique

• n_verification

• n_version

Appendix B: Backend Reference 131

B.2 C hooks

To save the backend developer from having to implement coNCePTuaL backends en-
tirely from scratch, coNCePTuaL provides a ‘codegen_c_generic.py’ module which de-
fines a base class for code generators that output C code. The base class handles the features
that are specific to C but independent of any messaging library. Derived classes need only
define those “hook” functions that are needed to implement library-specific functionality.

Hooks are named after the method from which they’re called but with an
all-uppercase tag appended. The following list shows each hook-calling method in
‘codegen_c_generic.py’ and the set of hooks it calls. See Section 6.2.1 [Hook methods],
page 95, for more information.
• code_declare_datatypes

− code_declare_datatypes_EXTRA_EVENTS

− code_declare_datatypes_EXTRA_EVENT_STATE

− code_declare_datatypes_EXTRA_EVS

− code_declare_datatypes_MCAST_STATE

− code_declare_datatypes_POST

− code_declare_datatypes_PRE

− code_declare_datatypes_RECV_STATE

− code_declare_datatypes_SEND_STATE

− code_declare_datatypes_SYNC_STATE

− code_declare_datatypes_WAIT_STATE

• code_declare_globals

− code_declare_globals_EXTRA

• code_def_alloc_event

− code_def_alloc_event_DECLS

− code_def_alloc_event_POST

− code_def_alloc_event_PRE

• code_def_exit_handler

− code_def_exit_handler_BODY

• code_def_finalize

− code_def_finalize_DECL

− code_def_finalize_POST

− code_def_finalize_PRE

• code_define_functions

− code_define_functions_INIT_COMM_1

− code_define_functions_INIT_COMM_2

− code_define_functions_INIT_COMM_3

− code_define_functions_POST

− code_define_functions_PRE

Appendix B: Backend Reference 132

• code_define_macros

− code_define_macros_POST

− code_define_macros_PRE

• code_define_main

− code_define_main_DECL

− code_define_main_POST_EVENTS

− code_define_main_POST_INIT

− code_define_main_PRE_EVENTS

− code_define_main_PRE_INIT

• code_def_init_cmd_line

− code_def_init_cmd_line_POST_ARGS

− code_def_init_cmd_line_POST_PARSE

− code_def_init_cmd_line_PRE_ARGS

− code_def_init_cmd_line_PRE_PARSE

• code_def_init_decls

− code_def_init_decls_POST

− code_def_init_decls_PRE

• code_def_init_init

− code_def_init_init_POST

− code_def_init_init_PRE

• code_def_init_misc

− code_def_init_misc_EXTRA

− code_def_init_misc_PRE_LOG_OPEN

• code_def_init_msg_mem

− code_def_init_msg_mem_EACH_TAG

− code_def_init_msg_mem_POST

− code_def_init_msg_mem_PRE

• code_def_init_reseed

− code_def_init_reseed_BCAST

• code_def_init_seed

− code_def_init_seed_POST

− code_def_init_seed_PRE

• code_def_procev_arecv

− code_def_procev_arecv_BODY

• code_def_procev_asend

− code_def_procev_asend_BODY

• code_def_procev

− code_def_procev_DECL

• code_def_procev_etime

Appendix B: Backend Reference 133

− code_def_procev_etime_REDUCE_MAX

• code_def_procev

− code_def_procev_EVENTS_DECL

− code_def_procev_EXTRA_EVENTS

• code_def_procev_mcast

− code_def_procev_mcast_BODY

• code_def_procev_newstmt

− code_def_procev_newstmt_BODY

• code_def_procev

− code_def_procev_POST

− code_def_procev_PRE

− code_def_procev_PRE_SWITCH

• code_def_procev_recv

− code_def_procev_recv_BODY

• code_def_procev_repeat

− code_def_procev_repeat_BODY

• code_def_procev_send

− code_def_procev_send_BODY

• code_def_procev_sync

− code_def_procev_sync_BODY

• code_def_procev_wait

− code_def_procev_wait_BODY_RECVS

− code_def_procev_wait_BODY_SENDS

• code_def_small_funcs

− code_def_small_funcs_POST

− code_def_small_funcs_PRE

• code_output_header_comments

− code_output_header_comments_EXTRA

• code_specify_include_files

− code_specify_include_files_POST

− code_specify_include_files_PRE

B.3 Representing aggregate functions

The LOG_AGGREGATE enumerated type, defined in ‘ncptl.h’, accepts the following values:

NCPTL_FUNC_NO_AGGREGATE
Log all data points.

NCPTL_FUNC_MEAN
Log only the arithmetic mean.

Appendix B: Backend Reference 134

NCPTL_FUNC_HARMONIC_MEAN
Log only the harmonic mean.

NCPTL_FUNC_GEOMETRIC_MEAN
Log only the geometric mean.

NCPTL_FUNC_MEDIAN
Log only the median.

NCPTL_FUNC_STDEV
Log only the standard deviation.

NCPTL_FUNC_VARIANCE
Log only the variance.

NCPTL_FUNC_SUM
Log only the sum.

NCPTL_FUNC_MINIMUM
Log only the minimum.

NCPTL_FUNC_MAXIMUM
Log only the maximum.

NCPTL_FUNC_FINAL
Log only the final measurement.

NCPTL_FUNC_ONLY
Log any data point, aborting if they’re not all identical.

NCPTL_FUNC_HISTOGRAM
Log a histogram of the data points

License 135

License� �
Copyright c© 2004, The Regents of the University of California
All rights reserved.

Copyright (2004). The Regents of the University of California. This software was pro-
duced under U.S. Government contract W-7405-ENG-36 for Los Alamos National Labora-
tory (LANL), which is operated by the University of California for the U.S. Department of
Energy. The U.S. Government has rights to use, reproduce, and distribute this software.
Neither the Government nor the University makes any warranty, express or
implied, or assumes any liability for the use of this software. If software is
modified to produce derivative works, such modified software should be clearly marked, so
as not to confuse it with the version available from LANL.

Additionally, redistribution and use in source and binary forms, with or without modi-
fication, are permitted provided that the following conditions are met:
• Redistributions of source code must retain the above copyright notice, this list of con-

ditions and the following disclaimer.
• Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the name of the University of California, LANL, the U.S. Government, nor the
names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

This software is provided by the University and contributors “as is” and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are dis-
claimed. in no event shall the University or contributors be liable for any
direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused and
on any theory of liability, whether in contract, strict liability, or tort
(including negligence or otherwise) arising in any way out of the use of this
software, even if advised of the possibility of such damage.
 	

Summary

This is a BSD license with the additional proviso that modified versions of coNCeP-
TuaL must indicate that they are, in fact, modified.

Index 136

Index

#
#include . 96

-
-- . 13
--after . 29, 30
--backend . 11, 15
--before . 29, 30
--booktabs . 38, 40
--breakpoint . 16, 17
--chdir . 40, 41
--colbegin . 31, 32, 34, 35, 37
--colend . 31, 33, 34, 35, 37
--colsep. 31, 32, 34, 35, 37, 39
--columns . 39, 42
--comment . 21, 22
--curses . 15, 16, 17
--dcolumn . 38
--delay . 16, 17
--disable-papi . 4
--disable-shared . 4, 121
--dumpkeys . 42
--enable-maintainer-mode 94
--envformat . 39, 40
--excel . 32, 34, 38
--exclude . 39, 40, 42
--extra-dot . 20
--extract 29, 30, 31, 38, 40, 41, 44
--force-merge . 29, 30, 42
--format 20, 21, 29, 30, 31, 32, 34, 35, 37, 38,

39, 40, 41, 42, 43, 45
--hcolbegin 31, 33, 34, 36, 37
--hcolend . 31, 33, 34, 36, 37
--hcolsep . 31, 33, 34, 36, 37
--help . . 2, 4, 5, 11, 13, 21, 22, 28, 29, 30, 86, 105
--hrowbegin 32, 33, 35, 36, 37
--hrowend . 32, 33, 35, 36, 38
--hrowsep . 32, 33, 35, 36, 37
--include . 39, 40, 42
--indent . 42
--keep-ints . 12, 95
--lenient . 12, 13
--logfile . 21, 22
--longtable . 38, 40, 43
--man . 28, 29, 30
--merge 32, 34, 35, 36, 38, 42, 43
--messages . 86
--monitor . 16, 17
--newlines . 40, 41
--no-attrs . 21
--no-compile . 12, 13, 14, 21
--no-lines . 21
--no-link . 12, 13, 14, 21

--no-trap 21, 22, 23, 104, 122
--noenv . 39, 40
--noheaders 31, 32, 34, 35, 37
--noparams . 39, 40
--onlylog . 18
--output . 12, 29, 30, 95
--prefix . 4, 9
--program . 12, 95
--quiet . 11, 95
--quote . 32, 33, 35, 36, 38
--rowbegin 31, 33, 34, 36, 37, 39
--rowend. 31, 33, 34, 36, 37, 39
--rowsep . 31, 33, 34, 37
--seed . 21, 22, 23, 105
--showfnames 32, 34, 35, 37, 38, 42, 43
--sort . 39, 40
--ssend . 14
--tablebegin 32, 33, 35, 36, 38
--tableend . 32, 33, 35, 36, 38
--tablesep . 32, 33, 35, 36, 38
--tabularx . 40, 43
--tasks . 14, 18
--this . 43
--trace . 15, 17
--unquote . 32, 34, 35, 36, 38
--unset . 40, 41
--usage . 21, 28, 29
--watchdog 21, 22, 23, 121, 122
--with-alignment . 122
--with-const-suffix . 103
--with-datatype . 103
--with-gettimeofday . 4, 8
--wrap . 42
-? . 21, 105
-a . 30
-b . 11, 30
-B . 16, 17
-c . 12
-C . 2, 21
-D . 16
-e . 30
-E . 12
-f . 30
-F . 30
-h . 21, 30, 86
-K . 12
-L . 12, 21
-m . 30, 86
-M . 16
-o . 12
-p . 12
-q . 11
-S . 21, 105
-W . 21

Index 137

/
/var/log/messages . 122

__init__ . 97

A
A . 47, 63, 64, 123

A HISTOGRAM OF THE . 59, 108

A RANDOM PROCESSOR 77, 98, 109

A RANDOM TASK 59, 83, 84, 98, 109

A RANDOM TASK OTHER THAN 109

a.out . 12

a2ps . 7, 9

ABS . 49, 50, 123

abstract-syntax tree (AST) . . . 20, 21, 94, 100, 129

acinclude.m4 . 93, 94

aclocal . 6, 94

aggr expr . 59, 72

aggr func . 59, 60, 72

AGGREGATES . 123

ALIGNED . 63, 64, 65, 105, 123

ALL . 123

ALL OTHER TASKS . 62

ALL TASKS . 62

AN . 47, 63, 64, 75, 123

AND 48, 71, 72, 73, 78, 83, 123

AND A SYNCHRONIZATION 78, 79

AND COMES FROM . 86

ARE . 123

ARITHMETIC . 123

ARITHMETIC MEAN . 60

AS . 63, 72, 123

ASSERT . 123

ASSERT THAT . 74

assert stmt . 74

ASSIGNED . 123

AST . 94

AST (abstract-syntax tree) . . . 20, 21, 94, 100, 129

ast.py . 93, 94

ASYNCHRONOUSLY 63, 66, 67, 69, 70, 123

autoconf . 6, 94

autoheader . 6, 94

automake . 6, 94

average . see MEAN

AWAIT . 123

AWAIT COMPLETION . 69

AWAITS . 123

AWAITS COMPLETION . 69

B
BACKEND . 123
BACKEND EXECUTE . 78
BACKEND EXECUTES . 49, 78, 99
backend_desc . 97
backend_name . 97
backend stmt . 78
base_global_parameters 102
BE . 83, 123
BIT . 64, 123
bit_errors . 127
BITS . 49, 50, 123
breakpoints . 16, 17
BUFFER . 63, 64, 123
BUT . 123
BUT NOT . 83
BYTE . 64, 65, 123
BYTES . 123
bytes_received . 128
bytes_sent . 128

C
c_generic (‘codegen_c_generic.py’) . . 15, 94, 95,

96, 97, 98, 100, 101, 102, 103, 109, 117, 131
c_mpi (‘codegen_c_mpi.py’) 11, 13, 14
c_seq (‘codegen_c_seq.py’) 13, 14, 97, 98
c_trace (‘codegen_c_trace.py’) . . . 11, 13, 14, 15,

16, 17, 116
c_udgram (‘codegen_c_udgram.py’) 13, 14, 17,

98, 101
CBRT . 49, 50, 51, 123
cc . 3, 120
CC . 4, 5, 14
ccc. 3, 120
CEILING . 50, 51, 123
CFLAGS . 5
char * . 103
clock_gettime(CLOCK_REALTIME) 27
clock_gettime(CLOCK_SGI_CYCLE) 27
code_declare_datatypes 131
code_declare_datatypes_EXTRA_EVENT_STATE

. 131
code_declare_datatypes_EXTRA_EVENTS 131
code_declare_datatypes_EXTRA_EVS 131
code_declare_datatypes_MCAST_STATE 131
code_declare_datatypes_POST 131
code_declare_datatypes_PRE 131
code_declare_datatypes_RECV_STATE 131
code_declare_datatypes_SEND_STATE . . . 100, 131
code_declare_datatypes_SYNC_STATE 131
code_declare_datatypes_WAIT_STATE 131
code_declare_globals. 131
code_declare_globals_EXTRA 131
code_declare_var . 101
code_def_alloc_event. 131
code_def_alloc_event_DECLS 131
code_def_alloc_event_POST 131

Index 138

code_def_alloc_event_PRE 131
code_def_exit_handler . 131
code_def_exit_handler_BODY 131
code_def_finalize . 131
code_def_finalize_DECL 131
code_def_finalize_POST 131
code_def_finalize_PRE . 131
code_def_init_cmd_line 132
code_def_init_cmd_line_POST_ARGS 132
code_def_init_cmd_line_POST_PARSE 132
code_def_init_cmd_line_PRE_ARGS 132
code_def_init_cmd_line_PRE_PARSE 132
code_def_init_decls . 132
code_def_init_decls_POST 132
code_def_init_decls_PRE 132
code_def_init_init . 132
code_def_init_init_POST 132
code_def_init_init_PRE 132
code_def_init_misc . 132
code_def_init_misc_EXTRA 132
code_def_init_misc_PRE_LOG_OPEN 132
code_def_init_msg_mem . 132
code_def_init_msg_mem_EACH_TAG 132
code_def_init_msg_mem_POST 132
code_def_init_msg_mem_PRE 132
code_def_init_reseed. 132
code_def_init_reseed_BCAST 98, 132
code_def_init_seed . 132
code_def_init_seed_POST 132
code_def_init_seed_PRE 132
code_def_main_newstmt . 109
code_def_procev . 132, 133
code_def_procev_arecv . 132
code_def_procev_arecv_BODY 132
code_def_procev_asend . 132
code_def_procev_asend_BODY 132
code_def_procev_DECL. 132
code_def_procev_etime . 132
code_def_procev_etime_REDUCE_MAX 133
code_def_procev_EVENTS_DECL 133
code_def_procev_EXTRA_EVENTS 133
code_def_procev_mcast . 133
code_def_procev_mcast_BODY 133
code_def_procev_newstmt 133
code_def_procev_newstmt_BODY 133
code_def_procev_POST. 133
code_def_procev_PRE . 133
code_def_procev_PRE_SWITCH 133
code_def_procev_recv. 133
code_def_procev_recv_BODY 133
code_def_procev_repeat 133
code_def_procev_repeat_BODY 133
code_def_procev_send. 133
code_def_procev_send_BODY 133
code_def_procev_sync. 133
code_def_procev_sync_BODY 133
code_def_procev_wait. 133
code_def_procev_wait_BODY_RECVS 133

code_def_procev_wait_BODY_SENDS 133
code_def_small_funcs. 133
code_def_small_funcs_POST 133
code_def_small_funcs_PRE 133
code_define_functions . 131
code_define_functions_INIT_COMM_1 131
code_define_functions_INIT_COMM_2 131
code_define_functions_INIT_COMM_3 131
code_define_functions_POST 131
code_define_functions_PRE 131
code_define_macros . 132
code_define_macros_POST 132
code_define_macros_PRE 132
code_define_main . 132
code_define_main_DECL . 132
code_define_main_POST_EVENTS 132
code_define_main_POST_INIT 132
code_define_main_PRE_EVENTS 132
code_define_main_PRE_INIT 132
code_output_header_comments 133
code_output_header_comments_EXTRA 133
code_specify_include_files 95, 96, 133
code_specify_include_files_POST 96, 133
code_specify_include_files_PRE 96, 133
codegen_c_generic.py 15, 94, 95, 96, 97, 98,

100, 101, 102, 103, 109, 117, 131
codegen_c_mpi.py . 11, 13, 14
codegen_c_seq.py 13, 14, 97, 98
codegen_c_trace.py . . . 11, 13, 14, 15, 16, 17, 116
codegen_c_udgram.py 13, 14, 17, 98, 101
codegen_dot.py 13, 19, 20, 21, 95
codegen_interpret.py 13, 17, 18, 19
codegen_language_library.py 93, 94
codestack . 100
combine_to_marker . 102
COMES . 123
compile_and_link . 94, 95
compile_only . 94, 95
COMPLETION . 123
COMPLETIONS . 123
complex stmt . 78, 85, 87, 88
COMPUTE . 47, 74, 75, 124
COMPUTES . 47, 75, 107, 124
COMPUTES AGGREGATES 73, 79, 109
CONC_SEND_EVENT . 100
conceptual-0.5.3.tar.gz . 7
conceptual.info* . 6
conceptual.pdf . 2, 6
conceptual.xml . 6
conceptual_0.5.3 . 7
config.log. 5, 119, 120
config.status . 5
configure 3, 4, 5, 6, 7, 8, 9, 10, 21, 27, 93, 94,

103, 119, 120, 121, 122
configure.ac . 93, 94
COUNTERS . 124
CPPFLAGS . 5, 14
csh . 22

Index 139

curses . 13, 15, 16

D
DATA . 124
data multiplier . 64, 65
data type . 64, 65, 75, 76
DAY . 124
DAYS . 75, 124
debugging . 14
DEFAULT . 124
delay stmt . 75
DEVIATION . 124
DIVIDES . 60, 124
dot . 21
DOT . 21
dot (‘codegen_dot.py’) 13, 19, 20, 21, 95
double . 111
DOUBLEWORD. 64, 65, 124
DOUBLEWORDS . 124

E
EACH . 59, 124
ecc . 3, 4
elapsed_usecs . 128
empty.log. 7
environment variables 2, 4, 5, 7, 11, 13, 14, 21,

120, 121, 122
error_fatal . 101
error_internal . 101
EV_ARECV . 99
EV_ASEND . 98
EV_BTIME . 99
EV_CODE . 99
EV_DELAY . 99
EV_ETIME . 99
EV_FLUSH . 99
EV_MCAST . 99
EV_NEWSTMT . 99
EV_RECV . 99, 118
EV_REPEAT. 99, 117, 118
EV_RESET . 99
EV_SEND . 98, 118
EV_SUPPRESS . 99
EV_SYNC . 99
EV_TOUCH . 99, 117
EV_WAIT . 99
EVEN . 124
event types, defined by ‘codegen_c_generic.py’

. 98
events_used . 102
EXECUTE . 124
EXECUTES . 124
expr . . 48, 49, 59, 61, 62, 63, 64, 65, 66, 71, 75, 76,

77, 78, 79, 80, 81, 82, 83, 84, 108
expr1 . 48
expr2 . 48

F
FACTOR10 . 49, 50, 124
filetype.vim . 10
FINAL . 60, 124
FLOOR . 50, 51, 124
flush stmt . 73
FOR 75, 76, 78, 79, 82, 84, 85, 89, 107, 117, 124
FOR EACH 49, 78, 79, 80, 82, 117
fork . 114, 121
fprintf . 13
FROM . 63, 64, 69, 124
FROM BUFFER . 66
FROM THE DEFAULT BUFFER . 66
function . 48

G
gcc. 3, 120
generate . 94, 95, 100
GenericASTTraversal . 94
GEOMETRIC . 124
GEOMETRIC MEAN . 60
get_cycles . 27
gettimeofday . 4, 27
GIGABYTE . 65, 124
grammar . 46
Graphviz . 19, 20, 21
GREATER . 124
GREATER THAN . 83, 84

H
HALFWORD . 64, 65, 124
HALFWORDS . 124
HARMONIC . 124
HARMONIC MEAN. 60
HISTOGRAM . 124
HOUR . 124
HOURS . 75, 124

I
icc . 3
ident 2, 47, 61, 62, 78, 79, 83, 86
IF . 48, 78, 84, 85, 124
if stmt . 84, 85
IN . 78, 79, 124
indent . 98
installation . 3
INTEGER . 64, 65, 124
INTEGERS . 124
interpret (‘codegen_interpret.py’) . . 13, 17, 18,

19
INTO . 63, 124
INTO BUFFER . 66
INTO THE DEFAULT BUFFER . 66
invoke_hook . 102
IS . 86, 124

Index 140

IS ASSIGNED TO . 77, 104
IS EVEN . 60
IS IN . 60, 61
IS ODD . 60
IT . 124
item count . 63, 64
item size . 63, 64, 65, 75
ITS . 124

K
KEYWORD . 46
KILOBYTE . 64, 124
KNOMIAL_CHILD 50, 52, 53, 91, 124
KNOMIAL_CHILDREN 50, 52, 53, 91, 125
KNOMIAL_PARENT 50, 52, 53, 125
kpsewhich. 9

L
LANGUAGE . 125
LD_LIBRARY_PATH . 7, 120, 121
LDFLAGS . 5, 14
LESS . 125
LESS THAN . 83, 84
LET . 78, 83, 84, 85, 125
let binding . 78, 83
libncptl . 10
libncptl.so . 121
libncptl_wrap.c . 120
libncptlmodule.so . 4, 121
LIBS. 5, 14
libtool . 120, 121
libtoolize . 6
listings . 9
locals() . 95
LOG . 73, 125
LOG_AGGREGATE . 133
log stmt . 71, 72
log_write_header_timer 107
LOG10. 49, 50, 51, 125
logextract . 6, 7, 23, 28
logextract.html . 7
LOGS 23, 49, 59, 72, 73, 79, 88, 99, 108, 125
lspci . 22

M
M-x font-lock-mode . 9
make . 3, 5, 6, 7, 8, 94, 121
make all . 7
make check . 3, 5
make clean . 6, 121
make dist . 7
make distclean . 6
make docbook . 6
make empty.log . 7
make info . 6

make install 2, 3, 4, 6, 8, 121
make logextract.html . 6
make maintainer-clean . 6
make modulefile . 7
make pdf . 6
make stylesheets . 7, 9
make tags . 7
make uninstall . 6, 121
Makefile . 4, 5, 7, 9, 94
Makefile.am . 93, 94
malloc . 106
MANPATH . 7
MAX . 49, 51, 125
MAXIMUM . 60, 125
mcast stmt . 70
MEAN . 60, 125
MEDIAN . 60, 73, 125
MEGABYTE . 64, 125
MEMORY . 125
MEMORY REGION. 75
MESH_COORDINATE 50, 54, 55, 57, 125
MESH_NEIGHBOR 50, 54, 55, 57, 115, 125
MESSAGE . 125
message alignment . 63, 64, 65
message spec 63, 64, 65, 67, 69, 70
MESSAGES . 63, 64, 125
MICROSECOND . 125
MICROSECONDS . 75, 125
MILLISECOND . 125
MILLISECONDS . 75, 125
MIN . 49, 50, 51, 125
MINIMUM . 60, 125
MINUTE . 125
MINUTES . 75, 125
MISALIGNED . 63, 64, 65, 125
MOD . 48, 125
module . 7
MODULEPATH . 7
MPI_Allreduce . 14
MPI_Barrier . 14
MPI_Bcast . 14
MPI_Comm_rank . 14
MPI_Comm_size . 14
MPI_Comm_split . 14
MPI_Errhandler_set . 14
MPI_Finalize . 14
MPI_Init . 14
MPI_Irecv . 14
MPI_Isend . 14
MPI_Recv . 14
MPI_Send . 14
MPI_Ssend . 14
MPI_Waitall . 14
mpicc . 5
MPICC . 5, 13, 14
MPICPPFLAGS . 5, 13
MPILDFLAGS . 5, 13
MPILIBS . 5, 13

Index 141

mpirun . 13
msgs_received . 128
msgs_sent . 128
MULTICAST . 125
MULTICASTS . 70, 125

N
n_aggregate_expr . 129
n_aggregate_func . 129
n_all_others . 129
n_an . 129
n_assert . 129
n_awaits_completion . 129
n_backend . 129
n_block_stmt . 129
n_buffer_number . 129
n_byte_count . 129
n_comes_from . 129
n_complex_stmt . 129
n_complex_stmt_list . 129
n_compute_aggregates. 129
n_computes_for . 129
n_data_multiplier . 129
n_data_type . 129
n_even . 129
n_expr . 129
n_for_count . 129
n_for_count_SYNC_ALL. 101
n_for_each . 129
n_for_time . 129
n_func_call . 129
n_header_decl . 129
n_ident . 129
n_if_stmt . 129
n_ifelse_expr . 129
n_in_range . 129
n_integer . 129
n_item_size . 129
n_let . 129
n_let_binding . 129
n_let_binding_list . 130
n_log_expr_list . 130
n_logs . 130
n_mcast_stmt . 130
n_message_alignment . 130
n_message_spec . 130
n_no_touching . 130
n_odd . 130
n_op_divides . 130
n_op_power . 130
n_outputs . 100, 130
n_processor_stmt . 130
n_program . 130
n_random_stride . 130
n_range_list . 130
n_real . 130
n_receive_attrs . 130

n_receive_stmt . 130
n_resets . 130
n_send_attrs . 130
n_send_stmt . 130
n_simple_stmt . 130
n_sleeps_for . 130
n_stride . 130
n_string . 130
n_string_or_expr_list . 130
n_string_or_log_comment 130
n_such_that . 130
n_sync_stmt . 130
n_task . 130
n_task_all . 130
n_then . 130
n_time_unit . 130
n_top_level_complex_stmt 130
n_touch_stmt . 130
n_touching . 130
n_touching_type . 130
n_unique . 130
n_verification . 130
n_version . 130
ncptl. 11, 12, 13, 14, 15, 20, 21, 94, 95
ncptl-mode.el . 7, 9
ncptl-mode.elc . 7, 9
ncptl.h . 10, 93, 103, 104, 133
ncptl.h.in . 93
ncptl.pc . 10
ncptl.py . 93, 97, 100
ncptl.ssh . 7, 9
ncptl.sty . 7, 9
ncptl.vim . 7, 10
ncptl_assign_processor 104
NCPTL_BACKEND . 11
NCPTL_CMDLINE . 103
NCPTL_CodeGen 94, 95, 97, 100, 101
ncptl_dfunc_abs . 111
ncptl_dfunc_bits . 111
ncptl_dfunc_cbrt . 111
ncptl_dfunc_ceiling . 112
ncptl_dfunc_factor10. 111
ncptl_dfunc_floor . 112
ncptl_dfunc_grid_coord 112
ncptl_dfunc_grid_neighbor 113
ncptl_dfunc_knomial_child 113
ncptl_dfunc_knomial_parent 113
ncptl_dfunc_log10 . 111
ncptl_dfunc_modulo . 112
ncptl_dfunc_power . 111
ncptl_dfunc_random_gaussian 113
ncptl_dfunc_random_poisson 114
ncptl_dfunc_random_uniform 113
ncptl_dfunc_round . 112
ncptl_dfunc_sqrt . 111
ncptl_dfunc_tree_child 112
ncptl_dfunc_tree_parent 112
ncptl_fatal . 103, 105, 106

Index 142

ncptl_fill_buffer . 106
ncptl_finalize . 114
ncptl_free . 106, 110
ncptl_func_abs . 111
ncptl_func_bits . 111
ncptl_func_cbrt . 111
ncptl_func_ceiling . 112
ncptl_func_factor10 . 111
NCPTL_FUNC_FINAL . 134
ncptl_func_floor . 112
NCPTL_FUNC_GEOMETRIC_MEAN 134
ncptl_func_grid_coord . 112
ncptl_func_grid_neighbor 113
NCPTL_FUNC_HARMONIC_MEAN 134
NCPTL_FUNC_HISTOGRAM. 134
ncptl_func_knomial_child 113
ncptl_func_knomial_parent 113
ncptl_func_log10 . 111
NCPTL_FUNC_MAXIMUM . 134
NCPTL_FUNC_MEAN . 133
NCPTL_FUNC_MEDIAN . 134
NCPTL_FUNC_MINIMUM . 134
ncptl_func_modulo . 112
NCPTL_FUNC_NO_AGGREGATE 133
NCPTL_FUNC_ONLY . 134
ncptl_func_power . 111
ncptl_func_random_gaussian 113
ncptl_func_random_poisson 114
ncptl_func_random_uniform 113
ncptl_func_round . 112
ncptl_func_sqrt . 111
NCPTL_FUNC_STDEV . 134
NCPTL_FUNC_SUM . 134
ncptl_func_tree_child . 112
ncptl_func_tree_parent 112
NCPTL_FUNC_VARIANCE . 134
ncptl_init 103, 104, 105, 107
ncptl_int . 103, 107, 111, 112
ncptl_lexer.py . 93
ncptl_log_add_comment . 108
ncptl_log_close . 109
ncptl_log_commit_data . 109
ncptl_log_compute_aggregates 109
NCPTL_LOG_FILE_STATE 103, 108
ncptl_log_open . 108
ncptl_log_write . 109
ncptl_log_write_footer 109
ncptl_log_write_header 107, 108
ncptl_malloc . 105, 106, 110
ncptl_malloc_message. 106
NCPTL_NOFORK . 121, 122
ncptl_pagesize . 103
ncptl_parse_command_line 104, 105, 108
ncptl_parser.py . 93
NCPTL_PATH . 11
ncptl_permit_signal . 104
NCPTL_QUEUE . 103
ncptl_queue_allocate. 110

ncptl_queue_contents. 110
ncptl_queue_empty . 110
ncptl_queue_free . 110
ncptl_queue_init . 110
ncptl_queue_pop . 110
ncptl_queue_push . 110
ncptl_random_task . 109
ncptl_realloc . 106
NCPTL_RUN_TIME_VERSION 104
ncptl_seed_random_task 105, 109
ncptl_set_flag_after_usecs 107
ncptl_strdup . 106
ncptl_time . 107
ncptl_touch_data . 107
ncptl_touch_memory . 104
NCPTL_TYPE_INT . 103
NCPTL_TYPE_STRING . 103
ncptl_udelay . 107
ncptl_verify . 106
ncurses . 15, 16
NICS . 103
nonterminal . 46
NONUNIQUE . 63, 64, 66, 125
NOT . 48, 125
num_tasks. 53, 54, 63, 74, 77, 84, 115, 128
number . 27, 28, 86

O
ODD . 125
OF . 59, 75, 125
OF THE . 59
options . 97
OR . 48, 86, 125
OTHER . 125
OTHER THAN . 83
OTHERWISE . 48, 78, 84, 85, 125
OUTPUT . 47, 71, 125
output stmt . 71
OUTPUTS. 47, 49, 71, 79, 99, 125

P
PAGE . 64, 65, 126
PAGE ALIGNED . 103
PAGE SIZED . 103
PAGES . 126
PAPI_get_real_usec . 27
param decl . 86, 87
PATH . 2, 7
pctrl . 122
pdsh . 13
pgcc . 3
pkg-config . 10
PLUS . 78, 79, 126
pop . 102
popen . 121
PROCESSOR . 77, 126

Index 143

processor stmt . 77
PROCESSORS . 126
program . 87
prun . 13
push . 101
push_marker . 102
pushmany . 96, 101

Q
QUADWORD . 64, 65, 126
QUADWORDS . 126

R
RANDOM . 126
RANDOM TASK . 23
RANDOM_GAUSSIAN . 50, 59, 126
RANDOM_POISSON . 50, 59, 126
RANDOM_UNIFORM . 50, 59, 126
range . 78, 79, 80, 82, 89
REAL . 48, 49, 126
RECEIVE . 2, 47, 63, 68, 69, 126
receive stmt . 69, 117
RECEIVES . 126
recv message spec . 63, 64, 67
REGION . 126
rel expr 48, 60, 61, 62, 74, 78, 84, 85
REPETITION . 126
REPETITIONS 76, 78, 79, 117, 126
replaytrace . 17
REQUIRE . 126
REQUIRE LANGUAGE VERSION 86
RESET . 74, 126
reset stmt . 74
RESETS . 126
RESETS ITS COUNTERS . 74
restricted ident 61, 62, 63, 67, 80
ROOT . 49, 50, 51, 126
ROUND . 50, 51, 126
runtimelib.c . 93, 104

S
SECOND . 126
SECONDS . 75, 126
SEND . 47, 63, 67, 68, 69, 126
send stmt . 67, 68, 69, 70, 117
SENDS . 67, 126
sheets . 9
simple stmt 15, 78, 79, 80, 83, 84, 85, 87, 88
single-stepping . 16, 17
SIZED . 64, 126
SLEEP . 74, 75, 126
SLEEPS . 75, 107, 126
SLOCCount . 10
source task . . . 61, 62, 63, 67, 69, 70, 71, 72, 73, 74,

75, 77, 78

SPARK . 93, 94, 100, 129
SQRT . 50, 51, 126
STANDARD . 126
STANDARD DEVIATION . 60
strdup . 106
STRIDE . 126
string . 71, 74, 78, 86
string or log comment . 71, 72
SUCH . 126
SUCH THAT . 61
SUM . 60, 126
sync stmt . 70
SYNCHRONIZATION . 126
SYNCHRONIZE . 126
SYNCHRONIZES . 70, 79, 126
SYNCHRONOUSLY . 63, 66, 126
system . 121

T
tag . 14
TAGS . 8
target tasks 61, 62, 63, 67, 69, 70
TASK . 47, 62, 126
TASKS . 47, 62, 127
THAN . 127
THAT . 127
THE . 59, 72, 127
THE DEFAULT BUFFER . 63, 64
THE VALUE OF . 71
THEIR . 127
THEM . 127
THEN . 76, 78, 79, 84, 127
TIME . 127
time unit . 75, 78, 82, 83
TIMES . 75, 127
TO . 67, 70, 127
TO UNSUSPECTING . 69
token.py . 93
top level complex stmt . 87, 88
TORUS_COORDINATE 50, 57, 127
TORUS_NEIGHBOR . 50, 57, 127
total_bytes . 128
total_msgs . 128
TOUCH . 76, 127
touch stmt . 75, 76, 117
TOUCHES . 75, 104, 127
TOUCHING . 127
tracing . 14
TREE_CHILD . 50, 51, 52, 127
TREE_PARENT . 50, 51, 127

U
uac . 122
UNALIGNED . 63, 64, 65, 127
UNIQUE . 63, 64, 66, 100, 127
UNSUSPECTING . 67, 68, 70, 127

Index 144

V
validatetimer . 4, 8, 107
VALUE . 127
VARIANCE . 60, 127
VERIFICATION . 127
VERSION . 127
version decl . 86, 87

W
wait stmt . 69
WARMUP . 78, 127
WARMUP REPETITIONS . 79
WHILE . 78, 83, 127
WHO . 127
WHO RECEIVE IT . 67
WHO RECEIVES IT . 63, 68, 69

WHO RECEIVES THEM . 68
WITH . 74, 127
WITH DATA TOUCHING 63, 64, 65, 66, 102, 107
WITH DEFAULT . 86
WITH RANDOM STRIDE . 75, 76
WITH STRIDE . 75
WITH VERIFICATION 23, 63, 64, 66, 69, 102, 106
WITHOUT . 127
WITHOUT DATA TOUCHING 63, 64, 66
WITHOUT VERIFICATION 63, 64, 66
WORD . 64, 65, 75, 76, 127
WORDS . 127

X
xlc . 3, 5
XOR . 48, 127

	Introduction
	Motivation
	Typesetting conventions

	Installation
	configure
	make
	make install

	Usage
	Compiling coNCePTuaL programs
	Supplied backends
	The c_seq backend
	The c_mpi backend
	The c_udgram backend
	The c_trace backend
	The interpret backend
	The dot backend

	Running coNCePTuaL programs
	Interpreting coNCePTuaL log files
	Log-file format
	logextract

	Grammar
	Primitives
	Expressions
	Arithmetic expressions
	Built-in functions
	Aggregate expressions
	Aggregate functions
	Relational expressions

	Task descriptions
	Restricted identifiers
	Source tasks
	Target tasks

	Communication statements
	Message specifications
	Sending
	Receiving
	Awaiting completion
	Multicasting
	Synchronizing

	I/O statements
	Utilizing log-file comments
	Writing to standard output
	Writing to a log file

	Other statements
	Resetting counters
	Asserting conditions
	Delaying execution
	Touching memory
	Reordering task IDs
	Injecting arbitrary code

	Complex statements
	Combining statements
	Iterating
	Binding variables
	Conditional execution
	Grouping

	Header declarations
	Language versioning
	Command-line arguments

	Complete programs

	Examples
	Latency
	Hot potato
	Hot spot
	Multicast trees

	Implementation
	Overview
	Backend creation
	Hook methods
	A minimal C-based backend
	Generated code
	Internals

	Run-time library functions
	Variables and data types
	Miscellaneous functions
	Initialization functions
	Memory-allocation functions
	Message-buffer manipulation functions
	Time-related functions
	Log-file functions
	Random-task functions
	Queue functions
	Language-visible functions
	Finalization functions

	Tips and Tricks
	Using out-of-bound task IDs to simplify code
	Proper use of conditionals
	Memory efficiency

	Troubleshooting
	Interpreting configure warnings
	Compaq compilers on Alpha CPUs
	``Cannot open shared object file'' errors
	Inhibiting the use of child processes
	Keeping programs from dying on a signal
	``Unaligned access'' warnings

	Reserved Words
	Keywords
	Predeclared variables

	Backend Reference
	Method calls
	C hooks
	Representing aggregate functions

	License
	Index

